Understanding Surface-Mediated Electrochemical Reactions: CO2 Reduction and Beyond

被引:243
作者
Dunwell, Marco [1 ]
Luc, Wesley [1 ]
Yan, Yushan [1 ]
Jiao, Feng [1 ]
Xu, Bingjun [1 ]
机构
[1] Univ Delaware, Ctr Catalyt Sci & Technol, Dept Chem & Biomol Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Tafel slope; carbon dioxide; electroreduction; electrokinetics; overpotential; HYDROGEN EVOLUTION REACTION; ROTATING-DISK ELECTRODE; SINGLE-CRYSTAL SURFACES; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; OXYGEN EVOLUTION; GOLD ELECTRODE; ABSORPTION SPECTROSCOPY; ENERGY-CONVERSION; REACTION-KINETICS;
D O I
10.1021/acscatal.8b02181
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding reaction pathways and mechanisms for electrocatalytic transformation of small molecules (e.g., H2O, CO2, and N-2) to value-added chemicals is critical to enabling the rational design of high-performing catalytic systems. Tafel analysis is widely used to gain mechanistic insights, and in some cases, has been used to determine the reaction mechanism. In this Perspective, we discuss the mechanistic insights that can be gained from Tafel analysis and its limitations using the simplest two-electron CO2 reduction reaction to CO on Au and Ag surfaces as an example. By comparing and analyzing existing as well as additional kinetic data, we show that the Tafel slopes obtained on Au and Ag surfaces in the kinetically controlled region (low overpotential) are consistently similar to 59 mV dec(-1), regardless of whether catalysts are polycrystalline or nanostructured in nature, suggesting that the initial electron transfer (CO2 + e(-) -> CO2-) is unlikely to be the rate-limiting step. In addition, we demonstrate how initial mechanistic assumptions can dictate experimental design, the result of which could in turn bias mechanistic interpretations. Therefore, as informative as Tafel analysis is, independent experimental and computational techniques are necessary to support a proposed mechanism of multielectron electrocatalytic reactions, such as CO2 reduction.
引用
收藏
页码:8121 / 8129
页数:17
相关论文
共 49 条
[1]  
Anslyn E. V., 2006, Modern Physical Organic Chemistry
[2]   Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion® [J].
Antoine, O ;
Bultel, Y ;
Durand, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :85-94
[3]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[4]   The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide [J].
Birdja, Yuvraj Y. ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) :2030-2034
[5]   Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode [J].
Blizanac, BB ;
Arenz, M ;
Ross, PN ;
Markovic, NM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (32) :10130-10141
[6]   THE MECHANISM OF THE HYDROGEN EVOLUTION REACTION ON PLATINUM SILVER AND TUNGSTEN SURFACES IN ACID SOLUTIONS [J].
BOCKRIS, JO ;
AMMAR, IA ;
HUQ, AKMS .
JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (07) :879-886
[7]  
Brad A.J., 2000, Electrochemical Methods: Fundamentals and Applications, V2nd
[8]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[9]   Oxygen evolution at RuO2(x) plus Co3O4(1-x) electrodes from acid solution [J].
Da Silva, LM ;
Boodts, JFC ;
De Faria, LA .
ELECTROCHIMICA ACTA, 2001, 46 (09) :1369-1375
[10]   Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces [J].
Dunwell, M. ;
Wang, Junhua ;
Yan, Y. ;
Xu, B. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (02) :971-975