Locally symmetric left invariant Riemannian metrics on 3-dimensional Lie groups

被引:2
作者
Nimpa, R. Pefoukeu [1 ]
Ngaha, M. B. Djiadeu [1 ]
Wouafo, J. Kamga [1 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Math, POB 812, Yaounde, Cameroon
关键词
Lie algebra; Lie group; left invariant metric; locally symmetric metric; CURVATURES;
D O I
10.1002/mana.201600332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the powerful tool Milnor bases to determine all the locally symmetric left invariant Riemannian metrics up to automorphism, on 3-dimensional connected and simply connected Lie groups, by solving system of polynomial equations of constants structure of each Lie algebra . Moreover, we show that E-0(2) is the only 3-dimensional Lie group with locally symmetric left invariant Riemannian metrics which are not symmetric.
引用
收藏
页码:2341 / 2355
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[2]  
[Anonymous], 1994, Rend. Sem. Mat. Univ. Pol. Torino
[3]  
Cheeger J., 1975, NorthHolland Mathematical Library, V9
[4]   The isometry groups of simply connected 3-dimensional unimodular Lie groups [J].
Ha, Ku Yong ;
Lee, Jong Bum .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) :189-203
[5]   Left invariant metrics and curvatures on simply connected three-dimensional Lie groups [J].
Ha, Ku Yong ;
Lee, Jong Bum .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (06) :868-898
[6]  
Helgason S, 1962, DIFFERENTIAL GEOMETR, VXII
[7]   CURVATURES OF LEFT INVARIANT METRICS ON LIE GROUPS [J].
MILNOR, J .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :293-329
[8]  
Morris D. W, 2015, ARXIVMATH0106063
[9]  
Petersen P, 2006, Riemannian geometry