Characterization of the complete chloroplast genome of Wisteriopsis reticulata (Fabaceae): an IRLC legumes

被引:5
作者
Zhu, Shanshan [1 ]
Liu, Aowei [2 ]
Xie, Xiao [2 ]
Xia, Maoqin [1 ]
Chen, Haimin [2 ]
机构
[1] Zhejiang Univ, Coll Life Sci, MOE Lab Biosyst Homeostasis & Protect, Systemat & Evolutionary Bot & Biodivers Grp, Hangzhou, Zhejiang, Peoples R China
[2] Ningbo Univ, Sch Marine Sci, Ningbo, Zhejiang, Peoples R China
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2022年 / 7卷 / 06期
基金
中国博士后科学基金;
关键词
Wisteriopsis reticulata; chloroplast genome; IRLC;
D O I
10.1080/23802359.2022.2079436
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The inverted repeat-lacking clade (IRLC) species are characterized by the loss of an IR region in their plastomes, which has long been of great interest. Wisteriopsis reticulata is one of the members of the tribe Wisterieae, which belongs to Fabaceae and is well-known as IRLC. Here, we reported and characterized the complete chloroplast genome of W. reticulata using the genome skimming approach. The chloroplast genome is 132,477 bp in length and lacks one copy of IR region. The genome encoded 112 unique genes including 89 protein-coding genes, 29 transfer RNA genes and four ribosomal RNA genes. Phylogenetic results supported the monophyly of the tribe Wisterieae (IRLC) and confirmed that W. reticulata belongs to the genus Wisteriopsis.
引用
收藏
页码:1137 / 1139
页数:3
相关论文
共 13 条
[1]   The Callerya Group redefined and Tribe Wisterieae (Fabaceae) emended based on morphology and data from nuclear and chloroplast DNA sequences [J].
Compton, James A. ;
Schrire, Brian D. ;
Konyves, Kalman ;
Forest, Felix ;
Malakasi, Panagiota ;
Mattapha, Sawai ;
Sirichamorn, Yotsawate .
PHYTOKEYS, 2019, (125) :1-112
[2]  
Doyle JJ., 1987, Phytochem Bull, V19, P11, DOI DOI 10.2307/2419362
[3]   Phylogenomic framework of the IRLC legumes (Leguminosae subfamily Papilionoideae) and intercontinental biogeography of tribe Wisterieae [J].
Duan, Lei ;
Li, Shi-Jin ;
Su, Chun ;
Sirichamorn, Yotsawate ;
Han, Li-Na ;
Ye, Wen ;
Loc, Phan Ke ;
Wen, Jun ;
Compton, James A. ;
Schrire, Brian ;
Nie, Ze-Long ;
Chen, Hong-Feng .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2021, 163
[4]   Methods for obtaining and analyzing whole chloroplast genome sequences [J].
Jansen, RK ;
Raubeson, LA ;
Boore, JL ;
DePamphilis, CW ;
Chumley, TW ;
Haberle, RC ;
Wyman, SK ;
Alverson, AJ ;
Peery, R ;
Herman, SJ ;
Fourcade, HM ;
Kuehl, JV ;
McNeal, JR ;
Leebens-Mack, J ;
Cui, L .
MOLECULAR EVOLUTION: PRODUCING THE BIOCHEMICAL DATA, PART B, 2005, 395 :348-384
[5]   GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J].
Jin, Jian-Jun ;
Yu, Wen-Bin ;
Yang, Jun-Bo ;
Song, Yu ;
dePamphilis, Claude W. ;
Yi, Ting-Shuang ;
Li, De-Zhu .
GENOME BIOLOGY, 2020, 21 (01)
[6]  
Kalyaanamoorthy S, 2017, NAT METHODS, V14, P587, DOI [10.1038/NMETH.4285, 10.1038/nmeth.4285]
[7]   MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability [J].
Katoh, Kazutaka ;
Standley, Daron M. .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (04) :772-780
[8]   IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era [J].
Minh, Bui Quang ;
Schmidt, Heiko A. ;
Chernomor, Olga ;
Schrempf, Dominik ;
Woodhams, Michael D. ;
von Haeseler, Arndt ;
Lanfear, Robert .
MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (05) :1530-1534
[9]   GeSeq - versatile and accurate annotation of organelle genomes [J].
Tillich, Michael ;
Lehwark, Pascal ;
Pellizzer, Tommaso ;
Ulbricht-Jones, Elena S. ;
Fischer, Axel ;
Bock, Ralph ;
Greiner, Stephan .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W6-W11
[10]  
Wojciechowski M.F., 2000, ADV LEGUME SYSTEMATI, P277