A Riemann-Hilbert boundary value problem in a bounded sector

被引:5
作者
Akel, Mohamed S. [1 ,2 ]
Alabbad, F. [1 ]
机构
[1] King Faisal Univ, Dept Math, Fac Sci, Al Ahsaa 31982, Saudi Arabia
[2] South Valley Univ, Dept Math, Fac Sci, Qena 83523, Egypt
关键词
45E05; 30G20; 30E25; Schwarz-type integral; Riemann-Hilbert problem; boundary value problems; Pompeiu-type integral; Cauchy-Riemann equation; DIRICHLET PROBLEM; GREEN-FUNCTIONS; EQUATION;
D O I
10.1080/17476933.2014.944866
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article a Riemann-Hilbert boundary value problem in a bounded sector domain with angle is considered. A plane parqueting-reflection technique is used. Boundary behaviours of resulting integral operators are discussed in detail. Then we study the Riemann-Hilbert boundary value problem, with an arbitrary index, for both homogeneous and inhomogeneous Cauchy-Riemann equations. Expressions of solutions and the condition of solvability are explicitly obtained.
引用
收藏
页码:493 / 509
页数:17
相关论文
共 31 条
[1]  
Abdymanapov SA., 2005, Eurasian Math J, V3, P22
[2]   Two basic boundary-value problems for the inhomogeneous Cauchy-Riemann equation in an infinite sector [J].
Akel, Mohamed S. ;
Hussein, Hussein S. .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (03) :315-328
[3]  
Aksoy U, 2007, THESIS METU ANKARA
[4]  
[Anonymous], 2009, MORE PROGRESSES ANAL
[5]  
[Anonymous], 1966, Boundary Value Problems
[6]  
[Anonymous], ANALYSIS
[7]   Steklov eigenproblems and the representation of solutions of elliptic boundary value problems [J].
Auchmuty, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (3-4) :321-348
[8]   Schwarz problem in lens and lune [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (01) :76-84
[9]   Harmonic Dirichlet problem for some equilateral triangle [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) :185-196
[10]  
Begehr H, 2010, EURASIAN MATH J, V1, P17