Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics

被引:13
作者
Guan, Zhiqiang [1 ,2 ]
Li, Ho-Wa [2 ]
Zhang, Jinfeng [1 ,2 ]
Cheng, Yuanhang [2 ]
Yang, Qingdan [1 ,2 ]
Lo, Ming-Fai [1 ,2 ]
Ng, Tsz-Wai [1 ,2 ]
Tsang, Sai-Wing [2 ]
Lee, Chun-Sing [1 ,2 ]
机构
[1] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
关键词
delocalization; charge-transfer states; polaron states; charge-modulated electroabsorption spectroscopy; organic photovoltaics; HETEROJUNCTION SOLAR-CELLS; HOT EXCITON DISSOCIATION; QUANTUM EFFICIENCY; ELECTROABSORPTION; SEMICONDUCTOR; SEPARATION; POLYMER; SPECTROSCOPY; ACCEPTOR; ENERGY;
D O I
10.1021/acsami.6b06010
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs.
引用
收藏
页码:21798 / 21805
页数:8
相关论文
共 46 条
[1]  
Bässler H, 2015, PHYS CHEM CHEM PHYS, V17, P28451, DOI 10.1039/c5cp04110d
[2]   The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors [J].
Bakulin, Artem A. ;
Rao, Akshay ;
Pavelyev, Vlad G. ;
van Loosdrecht, Paul H. M. ;
Pshenichnikov, Maxim S. ;
Niedzialek, Dorota ;
Cornil, Jerome ;
Beljonne, David ;
Friend, Richard H. .
SCIENCE, 2012, 335 (6074) :1340-1344
[3]   Calculating the Efficiency of Exciton Dissociation at the Interface between a Conjugated Polymer and an Electron Acceptor [J].
Baranovskii, S. D. ;
Wiemer, M. ;
Nenashev, A. V. ;
Jansson, F. ;
Gebhardt, F. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09) :1214-1221
[4]   Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells [J].
Bernardo, B. ;
Cheyns, D. ;
Verreet, B. ;
Schaller, R. D. ;
Rand, B. P. ;
Giebink, N. C. .
NATURE COMMUNICATIONS, 2014, 5
[5]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[6]  
2-A
[7]   Molecular Understanding of Organic Solar Cells: The Challenges [J].
Bredas, Jean-Luc ;
Norton, Joseph E. ;
Cornil, Jerome ;
Coropceanu, Veaceslav .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1691-1699
[8]   Stark spectroscopy: Applications in chemistry, biology, and materials science [J].
Bublitz, GU ;
Boxer, SG .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1997, 48 :213-242
[9]   Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells [J].
Burke, Timothy M. ;
Sweetnam, Sean ;
Vandewal, Koen ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[10]   Dielectric Effect on the Photovoltage Loss in Organic Photovoltaic Cells [J].
Chen, Song ;
Tsang, Sai-Wing ;
Lai, Tzung-Han ;
Reynolds, John R. ;
So, Franky .
ADVANCED MATERIALS, 2014, 26 (35) :6125-+