Initial Boundary Value Problem for Two-Dimensional Viscous Boussinesq Equations

被引:143
作者
Lai, Ming-Jun [1 ]
Pan, Ronghua [2 ]
Zhao, Kun
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
BLOW-UP CRITERION; LOCAL EXISTENCE;
D O I
10.1007/s00205-010-0357-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial boundary value problem of two-dimensional viscous Boussinesq equations over a bounded domain with smooth boundary. We show that the equations have a unique classical solution for H(3) initial data and the no-slip boundary condition. In addition, we show that the kinetic energy is uniformly bounded in time.
引用
收藏
页码:739 / 760
页数:22
相关论文
共 21 条
[1]  
Adams R.A., 2003, Sobolev Spaces, V2
[2]  
[Anonymous], 1998, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models
[3]  
Antontsev S.N., 1990, Boundary value problems in mechanics of nonhomogeneous fluids
[4]  
Bertozzi A., 2002, CAM T APP M
[5]  
Cannon J.R., 1980, Lecture Notes in Math., V771, P129
[6]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[7]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[8]   Generic solvability of the axisymmetric 3-D Euler equations and the 2-D Boussinesq equations [J].
Chae, DH ;
Imanuvilov, OY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :1-17
[9]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[10]   On squirt singularities in hydrodynamics [J].
Córdoba, D ;
Fefferman, C ;
De la LLave, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :204-213