Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field

被引:8
作者
Jizzini, Rida [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
Landau-Lifschitz equation; Ferromagnetic materials; Stability; EQUATIONS; NANOWIRES;
D O I
10.1016/j.jde.2011.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a one dimensional asymptotic model of ferromagnetic nanowire submitted to a magnetic field. We address the stability of the wall configuration for the Landau-Lifschitz equation, thus we determine the stability domain improving a result of Carbou-Labbe. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3349 / 3361
页数:13
相关论文
共 18 条
[1]   Neel and cross-tie wall energies for planar micromagnetic configurations [J].
Alouges, FC ;
Rivière, T ;
Serfaty, S .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :31-68
[2]  
[Anonymous], 1969, ELECTRODYNAMIQUE MIL
[3]  
Brown W. F., 1963, Micromagnetics
[4]   Time average in micromagnetism [J].
Carbou, G ;
Fabrie, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) :383-409
[5]  
Carbou G, 2006, DISCRETE CONT DYN-B, V6, P273
[6]   On the ferromagnetism equations in the non static case [J].
Carbou, G ;
Fabrie, P ;
Guès, O .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (03) :367-393
[7]  
Carbou G., 2001, DIFFERENTIAL INTEGRA, V14, P213
[8]   SMOOTH CONTROL OF NANOWIRES BY MEANS OF A MAGNETIC FIELD [J].
Carbou, Gilles ;
Labbe, Stephane ;
Trelat, Emmanuel .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) :871-879
[9]  
DeSimone A., 2000, ICIAM 99 EDINBURGH, V99, P175
[10]  
Flogge S., 1966, ENCY PHYS FERROMAGNE