Regular solutions to the Navier-Stokes equations with an initial data in L(3, ∞)

被引:0
作者
Maremonti, P. [1 ]
机构
[1] Seconda Univ Napoli, Dipartimento Matemat & Fis, Via Vivaldi 43, I-81100 Caserta, Italy
关键词
Navier-Stokes equations; Existence and uniqueness; Global solutions; EXTERIOR DOMAINS; VISCOUS-FLUID; STABILITY; SPACE; MOVEMENT; FLOWS; DECAY;
D O I
10.1007/s11587-016-0287-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes initial boundary value problem in exterior domains Omega subset of R-n, n >= 3. We assume that the initial data belongs to L(n, infinity) suitable subspace of L(n, infinity) Lorentz space. We are able to prove on an interval (0, T) the existence of a unique regular solution, global in time for small data. The solution enjoys some new estimates and a new approach to the proof is exhibited.
引用
收藏
页码:65 / 97
页数:33
相关论文
共 32 条
[1]  
Alvino A., 1977, B UNIONE MAT ITAL, V14, P148
[2]  
Bennett C., 1988, Interpolation of operators
[3]   ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1995, 174 (02) :311-382
[4]   Strong solutions to the incompressible Navier-Stokes equations in the half-space [J].
Cannone, M ;
Planchon, F ;
Schonbek, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :903-924
[5]  
Crispo F, 2004, REND SEMIN MAT U PAD, V112, P11
[6]  
Foias C., 1961, Bull. Soc. Math. Fr., V89, P1
[7]  
GALDI GP, 1978, RIC MAT, V27, P387
[8]  
Galdi GP., 1994, An Introduction to the Mathematical Theory of the Navier-Stokes Equations
[9]   ABSTRACT LP ESTIMATES FOR THE CAUCHY-PROBLEM WITH APPLICATIONS TO THE NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS [J].
GIGA, Y ;
SOHR, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) :72-94
[10]   SOLUTIONS IN LR OF THE NAVIER-STOKES INITIAL-VALUE PROBLEM [J].
GIGA, Y ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) :267-281