Li2O:Li-Mn-O Disordered Rock-Salt Nanocomposites as Cathode Prelithiation Additives for High-Energy Density Li-Ion Batteries

被引:52
作者
Diaz-Lopez, Maria [1 ,2 ]
Chater, Philip A. [2 ]
Bordet, Pierre [3 ]
Freire, Melanie [4 ,5 ]
Jordy, Christian [4 ]
Lebedev, Oleg, I [5 ]
Pralong, Valerie [5 ]
机构
[1] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
[2] Diamond Light Source Ltd, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
[3] Grenoble Alpes Univ, CNRS, Inst Neel, F-38000 Grenoble, France
[4] SAFT, 111-113 Bd Alfred Daney, F-33074 Bordeaux, France
[5] Normandie Univ, Ensicaen, Unicaen, Crismat,CNRS, F-14000 Caen, France
关键词
cation-disordered rock salts; initial capacity losses; Li4Mn2O5; lithium batteries; sacrificials; LITHIUM-ION; ELECTRODE MATERIALS; HIGH-CAPACITY; ANODE; PROGRESS;
D O I
10.1002/aenm.201902788
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The irreversible loss of lithium from the cathode material during the first cycles of rechargeable Li-ion batteries notably reduces the overall cell capacity. Here, a new family of sacrificial cathode additives based on Li2O:Li2/3Mn1/3O5/6 composites synthesized by mechanochemical alloying is reported. These nanocomposites display record (but irreversible) capacities within the Li-Mn-O systems studied, of up to 1157 mAh g(-1), which represents an increase of over 300% of the originally reported capacity in Li2/3Mn1/3O5/6 disordered rock salts. Such a high irreversible capacity is achieved by the reaction between Li2O and Li2/3Mn1/3O5/6 during the first charge, where electrochemically active Li2O acts as a Li+ donor. A 13% increase of the LiFePO4 and LiCoO2 first charge gravimetric capacities is demonstrated by the addition of only 2 wt% of the nanosized composite in the cathode mixture. This result shows the great potential of these newly discovered sacrificial additives to counteract initial losses of Li+ ions and improve battery performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation
    Tompsett, David A.
    Islam, M. Saiful
    CHEMISTRY OF MATERIALS, 2013, 25 (12) : 2515 - 2526
  • [42] Improved Electrochemical Performance of Li1.15Ni0.17Co0.11Mn0.57O2 by Li2O Cathode Additive
    Hou, Xuwang
    Yang, Yang
    Mao, Ya
    Song, Jinhua
    Yang, Jinze
    Li, Guorui
    Pan, Yanlin
    Wang, Yong
    Xie, Jingying
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : A3387 - A3390
  • [43] Theoretical study of Li2Ti6O13, Li2Sn6O13 and Li2Zr6O13 as possible cathode in Li-ion batteries
    Fernandez-Gamboa, J. R.
    Tielens, Frederik
    Zulueta, Yohandys A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 152
  • [44] Structure tuned Li1.2Mn0.6Ni0.2O2 with low cation mixing and Ni segregation as high performance cathode materials for Li-ion batteries
    Yang, Puheng
    Li, Honglei
    Wei, Xin
    Zhang, Shichao
    Xing, Yalan
    ELECTROCHIMICA ACTA, 2018, 271 : 276 - 283
  • [45] Grain boundaries boost the prelithiation capability of the Li2CO3 cathode additives for high-energy-density lithium-ion batteries
    Zheng, Liyuan
    Li, Guang
    Zhang, Jingjing
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [46] Electrochemical performance of Li-rich Li[Li0.2Mn0.56Ni0.17Co0.07]O2 cathode stabilized by metastable Li2SiO3 surface modification for advanced Li-ion batteries
    Wang, Dandan
    Zhang, Xiaoping
    Xiao, Ruijuan
    Lu, Xia
    Li, Yaping
    Xu, Tinghua
    Pan, Du
    Hu, Yong-Sheng
    Bai, Ying
    ELECTROCHIMICA ACTA, 2018, 265 : 244 - 253
  • [47] Layered Li[Li0.2Ni0.133Co0.133Mn0.534]O2 with porous sandwich structure as high-rate cathode materials for Li-ion batteries
    Chen, Jian
    Zhao, Na
    Zhao, Junwei
    MATERIALS LETTERS, 2018, 217 : 284 - 287
  • [48] Computational Design and Preparation of Cation-Disordered Oxides for High-Energy-Density Li-Ion Batteries
    Urban, Alexander
    Matts, Ian
    Abdellahi, Aziz
    Ceder, Gerbrand
    ADVANCED ENERGY MATERIALS, 2016, 6 (15)
  • [49] Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries
    Uzun, Davut
    Dogrusoz, Mehbare
    Mazman, Muhsin
    Bicer, Emre
    Avci, Ercan
    Sener, Tansel
    Kaypmaz, Tevhit Cem
    Demir-Cakan, Rezan
    SOLID STATE IONICS, 2013, 249 : 171 - 176
  • [50] LiNi0.5Mn0.5O2 hierarchical nanorods as high-capacity cathode materials for Li-ion batteries
    Yang, Jingang
    Guo, Biao
    He, Hong
    Li, Yuan
    Song, Chunlin
    Liu, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 : 714 - 718