Li2O:Li-Mn-O Disordered Rock-Salt Nanocomposites as Cathode Prelithiation Additives for High-Energy Density Li-Ion Batteries

被引:52
|
作者
Diaz-Lopez, Maria [1 ,2 ]
Chater, Philip A. [2 ]
Bordet, Pierre [3 ]
Freire, Melanie [4 ,5 ]
Jordy, Christian [4 ]
Lebedev, Oleg, I [5 ]
Pralong, Valerie [5 ]
机构
[1] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
[2] Diamond Light Source Ltd, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
[3] Grenoble Alpes Univ, CNRS, Inst Neel, F-38000 Grenoble, France
[4] SAFT, 111-113 Bd Alfred Daney, F-33074 Bordeaux, France
[5] Normandie Univ, Ensicaen, Unicaen, Crismat,CNRS, F-14000 Caen, France
关键词
cation-disordered rock salts; initial capacity losses; Li4Mn2O5; lithium batteries; sacrificials; LITHIUM-ION; ELECTRODE MATERIALS; HIGH-CAPACITY; ANODE; PROGRESS;
D O I
10.1002/aenm.201902788
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The irreversible loss of lithium from the cathode material during the first cycles of rechargeable Li-ion batteries notably reduces the overall cell capacity. Here, a new family of sacrificial cathode additives based on Li2O:Li2/3Mn1/3O5/6 composites synthesized by mechanochemical alloying is reported. These nanocomposites display record (but irreversible) capacities within the Li-Mn-O systems studied, of up to 1157 mAh g(-1), which represents an increase of over 300% of the originally reported capacity in Li2/3Mn1/3O5/6 disordered rock salts. Such a high irreversible capacity is achieved by the reaction between Li2O and Li2/3Mn1/3O5/6 during the first charge, where electrochemically active Li2O acts as a Li+ donor. A 13% increase of the LiFePO4 and LiCoO2 first charge gravimetric capacities is demonstrated by the addition of only 2 wt% of the nanosized composite in the cathode mixture. This result shows the great potential of these newly discovered sacrificial additives to counteract initial losses of Li+ ions and improve battery performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li-Ion Battery
    Cui, Suihan
    Wei, Yi
    Liu, Tongchao
    Deng, Wenjun
    Hu, Zongxiang
    Su, Yantao
    Li, Hao
    Li, Maofan
    Guo, Hua
    Duan, Yandong
    Wang, Weidong
    Rao, Mumin
    Zheng, Jiaxin
    Wang, Xinwei
    Pan, Feng
    ADVANCED ENERGY MATERIALS, 2016, 6 (04)
  • [22] Synthesis and characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 cathode material for Li-ion batteries
    Li, Jiangang
    Wang, Li
    Wang, Lei
    Luo, Jing
    Gao, Jian
    Li, Jianjun
    Wang, Jianlong
    He, Xiangming
    Tian, Guangyu
    Fan, Shoushan
    JOURNAL OF POWER SOURCES, 2013, 244 : 652 - 657
  • [23] Research on the kinetic properties of the cation disordered rock-salt Li-excess Li1.25Nb0.25Mn0.5O2 material
    Wang, Rui
    Huang, Baojun
    Qu, Zongtao
    Gong, Yansheng
    He, Beibei
    Wang, Huanwen
    SOLID STATE IONICS, 2019, 339
  • [24] Modification Strategies of High-Energy Li-Rich Mn-Based Cathodes for Li-Ion Batteries: A Review
    Xi, Zhenjie
    Sun, Qing
    Li, Jing
    Qiao, Ying
    Min, Guanghui
    Ci, Lijie
    MOLECULES, 2024, 29 (05):
  • [25] Li1.15Mn0.49Ni0.18Co0.18O2 nanoplates with exposed (012) plane as high energy and power cathode of Li-ion batteries
    Luo, Dong
    Wang, Guojun
    Fang, Shaohua
    Yang, Li
    Hirano, Shin-ichi
    ELECTROCHIMICA ACTA, 2016, 219 : 516 - 523
  • [26] Synthesis and Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Li-ion Batteries
    Du Ke
    Zhou Weiying
    Hu Guorong
    Peng Zhongdong
    Jiang Qinglai
    ACTA CHIMICA SINICA, 2010, 68 (14) : 1391 - 1398
  • [27] Low-temperature performance of the Li[Li0.2Co0.4Mn0.4]O2 cathode material studied for Li-ion batteries
    Wang, Yuhui
    Li, Zhe
    Zhu, Kai
    Li, Gang
    Wei, Yingjin
    Chen, Gang
    Wang, Chunzhong
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 3662 - +
  • [28] Structure Evolution and Thermal Stability of High-Energy-Density Li-Ion Battery Cathode Li2VO2F
    Wang, Xiaoya
    Huang, Yiqing
    Ji, Dongsheng
    Omenya, Fredrick
    Karki, Khim
    Sallis, Shawn
    Piper, Louis F. J.
    Wiaderek, Kamila M.
    Chapman, Karena W.
    Chernova, Natasha A.
    Whittinghama, M. Stanley
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) : A1552 - A1558
  • [29] Investigation of the exceptional charge performance of the 0.93Li4-xMn2O5-0.07Li2O composite cathode for Li-ion batteries
    Freire, M.
    Diaz-Lopez, M.
    Bordet, P.
    Colin, C. V.
    Lebedev, O. I.
    Kosova, N. V.
    Jordy, C.
    Chateigner, D.
    Chuvilin, A. L.
    Maignan, A.
    Pralong, V.
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (12) : 5156 - 5165
  • [30] Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries
    Johnson, C. S.
    Kang, S. -H.
    Vaughey, J. T.
    Pol, S. V.
    Balasubramanian, M.
    Thackeray, M. M.
    CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1263 - 1270