Commutators of Marcinkiewicz integral with rough kernels on Sobolev spaces

被引:2
作者
Chen, Yan Ping [2 ]
Ding, Yong [1 ]
Wang, Xin Xia [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst BNU, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Sci & Technol Beijing, Dept Math & Mech, Sch Appl Sci, Beijing 100083, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Marcinkiewicz integral; commutator; rough kernel; Sobolev space; Bony paraproduct; SINGULAR KERNELS; BOUNDEDNESS; OPERATORS;
D O I
10.1007/s10114-011-8544-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors give the boundedness of the commutator [b, mu(Omega,gamma)] from the homogeneous Sobolev space. L(gamma)(p)(R(n)) to the Lebesgue space L(p)(R(n)) for 1 < p < infinity, where mu(Omega,gamma). denotes the Marcinkiewicz integral with rough hypersingular kernel defined by [GRAPHICS] with Omega is an element of L(1) (S(n-1)) for 0 < gamma < min {n/2, n/p} or Omega is an element of L(log(+) L)(beta) (S(n-1)) for vertical bar 1 - 2/p vertical bar < beta < 1 (0 < gamma < n/2), respectively.
引用
收藏
页码:1345 / 1366
页数:22
相关论文
共 16 条
[1]  
Al-Salman A, 2002, MATH RES LETT, V9, P697
[2]   Operators with rough singular kernels [J].
Chen, Daning ;
Ding, Yong ;
Fan, Dashan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) :906-918
[3]   Certain operators with rough singular kernels [J].
Chen, JC ;
Fan, DS ;
Ying, YM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (03) :504-532
[4]   Boundedness of commutators of Marcinkiewicz integral with rough variable kernel [J].
Chen, Yanping ;
Ding, Yong .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 61 (04) :477-492
[5]   Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels [J].
Ding, Y ;
Fan, DS ;
Pan, YB .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (04) :593-600
[6]   On commutators of Marcinkiewicz integrals with rough kernel [J].
Ding, Y ;
Lu, SZ ;
Yabuta, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :60-68
[7]   L2-BOUNDEDNESS OF A SINGULAR INTEGRAL OPERATOR [J].
Fan, Dashan ;
Pan, Yibiao .
PUBLICACIONS MATEMATIQUES, 1997, 41 (02) :317-333
[8]  
FRAZIER M, 1988, LECT NOTES MATH, V1302, P223
[9]  
Grafakos L., 2004, Classical and Modern Fourier Analysis
[10]   Lp(Rn) boundedness for the commutator of a homogeneous singular integral operator [J].
Hu, G .
STUDIA MATHEMATICA, 2003, 154 (01) :13-27