Noncanonical roles of p53 in cancer stemness and their implications in sarcomas

被引:13
作者
Curylova, Lucie [1 ,2 ]
Ramos, Helena [3 ]
Saraiva, Lucilia [3 ]
Skoda, Jan [1 ,2 ]
机构
[1] Masaryk Univ, Dept Expt Biol, Fac Sci, Kamenice 5, Brno 62500, Czech Republic
[2] St Annes Univ Hosp, Int Clin Res Ctr, Brno 65691, Czech Republic
[3] Univ Porto, Fac Farm, Lab Microbiol, Dept Ciencias Biol,LAQV REQUIMTE, P-4050313 Porto, Portugal
关键词
p53; Sarcoma; Mesenchymal stem cells; Cancer stem cells; p53-targeted therapy; SMALL-MOLECULE RITA; SOFT-TISSUE SARCOMAS; MUTANT P53; WILD-TYPE; MDM2; AMPLIFICATION; EWING SARCOMA; TP53; GENE; IN-VIVO; GENOMIC LANDSCAPE; ANTAGONIST RG7112;
D O I
10.1016/j.canlet.2021.10.037
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 183 条
  • [1] Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment
    Alexandrova, E. M.
    Yallowitz, A. R.
    Li, D.
    Xu, S.
    Schulz, R.
    Proia, D. A.
    Lozano, G.
    Dobbelstein, M.
    Moll, U. M.
    [J]. NATURE, 2015, 523 (7560) : 352 - +
  • [2] p53: The barrier to cancer stem cell formation
    Aloni-Grinstein, Ronit
    Shetzer, Yoav
    Kaufman, Tom
    Rotter, Varda
    [J]. FEBS LETTERS, 2014, 588 (16) : 2580 - 2589
  • [3] Antonescu CR, 2001, CLIN CANCER RES, V7, P3977
  • [4] p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells
    Armesilla-Diaz, Alejandro
    Elvira, Gema
    Silva, Augusto
    [J]. EXPERIMENTAL CELL RESEARCH, 2009, 315 (20) : 3598 - 3610
  • [5] The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential
    Arsic, Nikola
    Gadea, Gilles
    Lagerqvist, E. Louise
    Busson, Muriel
    Cahuzac, Nathalie
    Brock, Carsten
    Hollande, Frederic
    Gire, Veronique
    Pannequin, Julie
    Roux, Pierre
    [J]. STEM CELL REPORTS, 2015, 4 (04): : 531 - 540
  • [6] p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation
    Artigas, Natalia
    Gamez, Beatriz
    Cubillos-Rojas, Monica
    Sanchez-de Diego, Cristina
    Antonio Valer, Jose
    Pons, Gabriel
    Luis Rosa, Jose
    Ventura, Francesc
    [J]. CELL DEATH AND DIFFERENTIATION, 2017, 24 (12) : 2022 - 2031
  • [7] Variability in functional p53 reactivation by PRIMA-1Met/APR-246 in Ewing sarcoma
    Aryee, D. N. T.
    Niedan, S.
    Ban, J.
    Schwentner, R.
    Muehlbacher, K.
    Kauer, M.
    Kofler, R.
    Kovar, H.
    [J]. BRITISH JOURNAL OF CANCER, 2013, 109 (10) : 2696 - 2704
  • [8] Association between p53 protein phosphorylated at serine 20 expression and ovarian carcinoma stem cells phenotype: correlation with clinicopathological parameters of ovarian cancer
    Bar, J.
    Grelewski, P.
    Deszcz, I.
    Noga, L.
    Hirnle, L.
    Lis-Nawara, A.
    [J]. NEOPLASMA, 2019, 66 (05) : 801 - 809
  • [9] Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy
    Barretina, Jordi
    Taylor, Barry S.
    Banerji, Shantanu
    Ramos, Alexis H.
    Lagos-Quintana, Mariana
    DeCarolis, Penelope L.
    Shah, Kinjal
    Socci, Nicholas D.
    Weir, Barbara A.
    Ho, Alan
    Chiang, Derek Y.
    Reva, Boris
    Mermel, Craig H.
    Getz, Gad
    Antipin, Yevgenyi
    Beroukhim, Rameen
    Major, John E.
    Hatton, Charles
    Nicoletti, Richard
    Hanna, Megan
    Sharpe, Ted
    Fennell, Tim J.
    Cibulskis, Kristian
    Onofrio, Robert C.
    Saito, Tsuyoshi
    Shukla, Neerav
    Lau, Christopher
    Nelander, Sven
    Silver, Serena J.
    Sougnez, Carrie
    Viale, Agnes
    Winckler, Wendy
    Maki, Robert G.
    Garraway, Levi A.
    Lash, Alex
    Greulich, Heidi
    Root, David E.
    Sellers, William R.
    Schwartz, Gary K.
    Antonescu, Cristina R.
    Lander, Eric S.
    Varmus, Harold E.
    Ladanyi, Marc
    Sander, Chris
    Meyerson, Matthew
    Singer, Samuel
    [J]. NATURE GENETICS, 2010, 42 (08) : 715 - U103
  • [10] Why are there hotspot mutations in the TP53 gene in human cancers?
    Baugh, Evan H.
    Ke, Hua
    Levine, Arnold J.
    Bonneau, Richard A.
    Chan, Chang S.
    [J]. CELL DEATH AND DIFFERENTIATION, 2018, 25 (01) : 154 - 160