Specificity of the E-coli LysR-Type Transcriptional Regulators

被引:27
作者
Knapp, Gwendowlyn S. [1 ]
Hu, James C. [1 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
关键词
CRYSTAL-STRUCTURE; STRUCTURAL BASIS; FAMILY; PROTEINS; ACTIVATOR; DOMAINS; OXYR; DNA; OLIGOMERIZATION; DEGRADATION;
D O I
10.1371/journal.pone.0015189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Families of paralogous oligomeric proteins are common in biology. How the specificity of assembly evolves is a fundamental question of biology. The LysR-Type Transcriptional Regulators (LTTR) form perhaps the largest family of transcriptional regulators in bacteria. Because genomes often encode many LTTR family members, it is assumed that many distinct homooligomers are formed simultaneously in the same cell without interfering with each other's activities, suggesting specificity in the interactions. However, this assumption has not been systematically tested. Methodology/ Principal Findings: A negative-dominant assay with lambda cI repressor fusions was used to evaluate the assembly of the LTTRs in E. coli K-12. Thioredoxin (Trx)-LTTR fusions were used to challenge the homooligomeric interactions of lambda cI-LTTR fusions. Eight cI-LTTR fusions were challenged with twenty-eight Trx fusions. LTTRs could be divided into three classes based on their interactions with other LTTRs. Conclusions/Significance: Multimerization of LTTRs in E. coli K-12 is mostly specific. However, under the conditions of the assay, many LTTRs interact with more than one noncognate partner. The physiological significance and physical basis for these interactions are not known.
引用
收藏
页数:4
相关论文
共 28 条
[1]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207
[2]   RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague [J].
Cathelyn, Jason S. ;
Crosby, Seth D. ;
Lathem, Wyndham W. ;
Goldman, William E. ;
Miller, Virginia L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (36) :13514-13519
[3]   Structural basis of the redox switch in the OxyR transcription factor [J].
Choi, HJ ;
Kim, SJ ;
Mukhopadhyay, P ;
Cho, S ;
Woo, JR ;
Storz, G ;
Ryu, SE .
CELL, 2001, 105 (01) :103-113
[4]   OXYR, A POSITIVE REGULATOR OF HYDROGEN PEROXIDE-INDUCIBLE GENES IN ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM, IS HOMOLOGOUS TO A FAMILY OF BACTERIAL REGULATORY PROTEINS [J].
CHRISTMAN, MF ;
STORZ, G ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (10) :3484-3488
[5]   Crystallization of the effector-binding domains of BenM and CatM, LysR-type transcriptional regulators from Acinetobacter sp ADP1 [J].
Clark, T ;
Haddad, S ;
Neidle, E ;
Momany, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :105-108
[6]   Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-Type transcriptional activator [J].
Collier, LS ;
Gaines, GL ;
Neidle, EL .
JOURNAL OF BACTERIOLOGY, 1998, 180 (09) :2493-2501
[7]   The Pfam protein families database [J].
Finn, Robert D. ;
Mistry, Jaina ;
Tate, John ;
Coggill, Penny ;
Heger, Andreas ;
Pollington, Joanne E. ;
Gavin, O. Luke ;
Gunasekaran, Prasad ;
Ceric, Goran ;
Forslund, Kristoffer ;
Holm, Liisa ;
Sonnhammer, Erik L. L. ;
Eddy, Sean R. ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D211-D222
[8]   A LARGE FAMILY OF BACTERIAL ACTIVATOR PROTEINS [J].
HENIKOFF, S ;
HAUGHN, GW ;
CALVO, JM ;
WALLACE, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (18) :6602-6606
[9]   Protein abundance profiling of the Escherichia coli cytosol [J].
Ishihama, Yasushi ;
Schmidt, Thorsten ;
Rappsilber, Juri ;
Mann, Matthias ;
Hartl, F. Ulrich ;
Kerner, Michael J. ;
Frishman, Dmitrij .
BMC GENOMICS, 2008, 9 (1)
[10]   The oligomerization of CynR in Escherichia coli [J].
Knapp, Gwendowlyn S. ;
Hu, James C. .
PROTEIN SCIENCE, 2009, 18 (11) :2307-2315