AXIAL COUETTE FLOW OF A GENERALIZED OLDROYD-B FLUID DUE TO A LONGITUDINAL TIME-DEPENDENT SHEAR STRESS

被引:7
作者
Awan, A. U. [2 ]
Fetecau, Corina [1 ]
Rubbab, Qammar [3 ]
机构
[1] Tech Univ Iasi, Dept Theoret Mech, Iasi 700050, Romania
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[3] FAST Natl Univ Comp & Emerging Sci, Dept Math, Lahore, Pakistan
关键词
Generalized Oldroyd-B fluid; velocity field; tangential stress; cylindrical domains; NON-NEWTONIAN FLUID;
D O I
10.2989/16073606.2010.541611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The velocity field and the adequate shear stress corresponding to the unsteady flow of a generalized Oldroyd-B fluid in an infinite circular cylinder are determined by means of Hankel and Laplace transforms. The solutions that have been obtained, written in terms of the generalized G-functions, satisfy all imposed initial and boundary conditions. The similar solutions for generalized Maxwell fluids as well as those for ordinary fluids are obtained as limiting cases of our general solutions.
引用
收藏
页码:429 / 441
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1999, NASATP1999209424
[2]  
Bird R.B., 1987, Dynamics of Polymeric Liquids: Volume 1, Fluid Mechanics, V1
[3]  
Bohme G, 2000, Stromungsmechanik nichtnewtonscher Fluide, V2
[4]  
Debnath L., 2007, Integral Transforms and Their Applications, V2nd, DOI DOI 10.1201/9781420010916
[5]   Analytical solutions for non-Newtonian fluid flows in pipe-like domains [J].
Fetecau, C .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (02) :225-231
[6]   Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder [J].
Fetecau, C. ;
Mahmood, A. ;
Fetecau, Corina ;
Vieru, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) :3096-3108
[7]   Decay of a potential vortex in a generalized Oldroyd-B fluid [J].
Fetecau, Corina ;
Fetecau, C. ;
Khan, M. ;
Vieru, D. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :497-506
[8]   Helical flow of an Oldroyd-B fluid due to a circular cylinder subject to time-dependent shear stresses [J].
Fetecau, Corina ;
Imran, M. ;
Fetecau, C. ;
Burdujan, I. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (05) :959-969
[9]   On the rest state stability of an objective fractional derivative viscoelastic fluid model [J].
Heibig, Arnaud ;
Palade, Liviu Iulian .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
[10]   ON THE FORMULATION OF RHEOLOGICAL EQUATIONS OF STATE [J].
OLDROYD, JG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 200 (1063) :523-541