Comparative Proteomic Analysis of Tolerant and Sensitive Varieties Reveals That Phenylpropanoid Biosynthesis Contributes to Salt Tolerance in Mulberry

被引:28
|
作者
Gan, Tiantian [1 ]
Lin, Ziwei [1 ]
Bao, Lijun [1 ]
Hui, Tian [1 ]
Cui, Xiaopeng [1 ]
Huang, Yanzhen [1 ]
Wang, Hexin [1 ]
Su, Chao [1 ]
Jiao, Feng [1 ]
Zhang, Minjuan [1 ]
Qian, Yonghua [1 ]
机构
[1] Northwest A&F Univ, Coll Anim Sci & Technol, Sericultural & Silk Res Inst, Yangling 712100, Shaanxi, Peoples R China
关键词
mulberry; salt stress; TMT proteomics; phenylpropanoid metabolism; ELEVATED CO2; WATER-STRESS; PHOTOSYNTHESIS; SALINITY; MAIZE; IDENTIFICATION; METABOLISM; RESPONSES; PROLINE; PLANTS;
D O I
10.3390/ijms22179402
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of Sophora alopecuroides
    Zhu, Youcheng
    Wang, Qingyu
    Wang, Ying
    Xu, Yang
    Li, Jingwen
    Zhao, Shihui
    Wang, Doudou
    Ma, Zhipeng
    Yan, Fan
    Liu, Yajing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (05) : 1 - 25
  • [2] Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass
    Cao, Yan-Hua
    Lu, Zhao-Long
    Li, Yuan-Hong
    Jiang, Yiwei
    Zhang, Jin-Lin
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [3] Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet
    Geng, Gui
    Lv, Chunhua
    Stevanato, Piergiorgio
    Li, Renren
    Liu, Hui
    Yu, Lihua
    Wang, Yuguang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (23)
  • [4] Comparative transcriptome analysis of root types in salt tolerant and sensitive rice varieties in response to salinity stress
    Cartagena, Joyce A.
    Yao, Yao
    Mitsuya, Shiro
    Tsuge, Takashi
    PHYSIOLOGIA PLANTARUM, 2021, 173 (04) : 1629 - 1642
  • [5] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Mingquan Wang
    Yufeng Wang
    Yifei Zhang
    Chunxia Li
    Shichen Gong
    Shuqin Yan
    Guoliang Li
    Guanghui Hu
    Honglei Ren
    Jianfei Yang
    Tao Yu
    Kejun Yang
    Genes & Genomics, 2019, 41 : 781 - 801
  • [6] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Wang, Mingquan
    Wang, Yufeng
    Zhang, Yifei
    Li, Chunxia
    Gong, Shichen
    Yan, Shuqin
    Li, Guoliang
    Hu, Guanghui
    Ren, Honglei
    Yang, Jianfei
    Yu, Tao
    Yang, Kejun
    GENES & GENOMICS, 2019, 41 (07) : 781 - 801
  • [7] Dissipation of excess photosynthetic energy contributes to salinity tolerance: A comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas
    Lima Neto, Milton C.
    Lobo, Ana K. M.
    Martins, Marcio O.
    Fontenele, Adilton V.
    Silveira, Joaquim Albenisio G.
    JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (01) : 23 - 30
  • [8] Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms
    Dennis Janz
    Katja Behnke
    Jörg-Peter Schnitzler
    Basem Kanawati
    Philippe Schmitt-Kopplin
    Andrea Polle
    BMC Plant Biology, 10
  • [9] Biochemical and molecular characterisations of salt tolerance components in rice varieties tolerant and sensitive to NaCl: the relevance of Na+exclusion in salt tolerance in the species
    Gupta, Amber
    Shaw, Birendra P.
    FUNCTIONAL PLANT BIOLOGY, 2021, 48 (01) : 72 - 87
  • [10] Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms
    Janz, Dennis
    Behnke, Katja
    Schnitzler, Joerg-Peter
    Kanawati, Basem
    Schmitt-Kopplin, Philippe
    Polle, Andrea
    BMC PLANT BIOLOGY, 2010, 10 : 150