Tropical polytopes and cellular resolutions

被引:31
|
作者
Develin, Mike
Yu, Josephine
机构
[1] Amer Inst Math, Palo Alto, CA 94306 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
tropical polytope; cellular resolution; monomial ideal;
D O I
10.1080/10586458.2007.10129009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tropical polytopes are images of polytopes in an affine space over the Puiseux series field under the degree map. This view-point gives rise to a family of cellular resolutions of monomial ideals that generalize the hull complex of Bayer and Sturmfels [Bayer and Sturmfels 98], instances of which improve upon the hull resolution in the sense of being smaller. We also suggest a new definition of a face of a tropical polytope, which has nicer properties than previous definitions; we give examples and provide many conjectures and directions for further research in this area.
引用
收藏
页码:277 / 291
页数:15
相关论文
共 50 条
  • [11] Tropical implicitization and mixed fiber polytopes
    Sturmfels, Bernd
    Yu, Josephine
    SOFTWARE FOR ALGEBRAIC GEOMETRY, 2008, 148 : 111 - +
  • [12] Cellular resolutions of cointerval ideals
    Anton Dochtermann
    Alexander Engström
    Mathematische Zeitschrift, 2012, 270 : 145 - 163
  • [13] Cellular resolutions of monomial modules
    Bayer, D
    Sturmfels, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 502 : 123 - 140
  • [14] Cellular resolutions of cointerval ideals
    Dochtermann, Anton
    Engstroem, Alexander
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 145 - 163
  • [15] Small toric resolutions of toric varieties of string polytopes with small indices
    Cho, Yunhyung
    Kim, Yoosik
    Lee, Eunjeong
    Park, Kyeong-Dong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (01)
  • [16] ON TROPICAL KLEENE STAR MATRICES AND ALCOVED POLYTOPES
    Jesus de la Puente, Maria
    KYBERNETIKA, 2013, 49 (06) : 897 - 910
  • [17] Discrete Morse theory for cellular resolutions
    Batzies, E
    Welker, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 543 : 147 - 168
  • [18] Cellular resolutions from mapping cones
    Dochtermann, Anton
    Mohammadi, Fatemeh
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 128 : 180 - 206
  • [19] Numerical Software to Compute Newton polytopes and Tropical Membership
    Brysiewicz, Taylor
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (03) : 577 - 589
  • [20] Root polytopes, tropical types, and toric edge ideals
    Almousa, Ayah
    Dochtermann, Anton
    Smith, Ben
    ALGEBRAIC COMBINATORICS, 2025, 8 (01):