Multiple solutions for a quasilinear elliptic variational system on strip-like domains

被引:8
作者
Cammaroto, F. [1 ]
Chinni, A. [1 ]
Di Bella, B. [1 ]
机构
[1] Univ Messina, Dept Math, I-98166 Messina, Italy
关键词
strip-like domain; eigenvalue problem; elliptic systems;
D O I
10.1017/S0013091505001380
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quasilinear elliptic variational system -Delta(p)u = gimel F-u (x,u,v) + mu H-u (x,u,v) in Omega, -Delta(p)u = gimel F-u (x,u,v) + mu H-u (x,u,v) in Omega, u=v=0 on partial derivative Omega, where Omega is a strip-like domain and gimel and mu are positive parameters. Using a recent two-local-minima theorem and the principle of symmetric criticality, existence and multiplicity are proved under suitable conditions on F.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 6 条
[1]   Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains [J].
Kristály, A .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :465-477
[2]   SYMMETRY AND COMPACTNESS IN SOBOLEV SPACES [J].
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) :315-334
[3]   PRINCIPLE OF SYMMETRIC CRITICALITY [J].
PALAIS, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (01) :19-30
[4]   A MOUNTAIN PASS THEOREM [J].
PUCCI, P ;
SERRIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (01) :142-149
[5]   On a three critical points theorem [J].
Ricceri, B .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :220-226
[6]   Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set [J].
Ricceri, Biagio .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (17) :3308-3312