Highly Bright SERS Nanotags with Multiplexing Fingerprints for Sensitive Immunoassays

被引:6
作者
Ma, Ying [1 ,2 ]
Promthaveepong, Kittithat [2 ]
Li, Nan [3 ]
机构
[1] South China Univ Technol, Coll Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Natl Univ Singapore, Dept Biomed Engn, 4 Engn Dr 3,Engn Block 4, Singapore 117583, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, Div Bioengn, 70 Nanyang Dr, Singapore 637457, Singapore
来源
ADVANCED OPTICAL MATERIALS | 2017年 / 5卷 / 14期
基金
英国医学研究理事会;
关键词
immunoassays; multiplexing; self-assembly; SERS nanotag; superparticles; SURFACE-ENHANCED RAMAN; SINGLE-PARTICLE; SPECTROSCOPY; SCATTERING; NANOPARTICLES; TAGS;
D O I
10.1002/adom.201700133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface-enhanced Raman scattering (SERS) nanotags are regarded as good optical probes for bioimaging and detection owing to their distinct advantages over fluorescent dyes. However, the difficulty of making bright and reproducible SERS nanotags has limited their applications. Here, a new strategy is reported to develop ultrabright SERS nanotags via the creation of extreme high-density of SERS hotspots and maximal loading of Raman reporters. The one-pot formation and self-assembly of gold (Au) nanoparticles (NPs) create high-density of nanogaps for SERS enhancement, and direct addition of Raman reporters during AuNP formation enables maximal loading of the Raman reporters within the nanotags. This strategy can generate bright SERS nanotags carrying up to four Raman reporters. Moreover, the as-synthesized SERS nanotags show great performance as a label in the immunoassay of staphylococcal enterotoxins B. It is envisioned that the SERS nanotags can find more applications in biological detection and imaging.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Staphylococcal enterotoxins [J].
Balaban, N ;
Rasooly, A .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2000, 61 (01) :1-10
[2]   Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering [J].
Doering, WE ;
Nie, SM .
ANALYTICAL CHEMISTRY, 2003, 75 (22) :6171-6176
[3]   SERS as a foundation for nanoscale, optically detected biological labels [J].
Doering, William E. ;
Piotti, Marcelo E. ;
Natan, Michael J. ;
Freeman, R. Griffith .
ADVANCED MATERIALS, 2007, 19 (20) :3100-3108
[4]   Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules [J].
Gellner, Magdalena ;
Koempe, Karsten ;
Schluecker, Sebastian .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (07) :1839-1844
[5]   Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J].
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5599-5611
[6]   Discrimination of bacteria using surface-enhanced Raman spectroscopy [J].
Jarvis, RM ;
Goodacre, R .
ANALYTICAL CHEMISTRY, 2004, 76 (01) :40-47
[7]   Noninvasive molecular imaging of small living subjects using Raman spectroscopy [J].
Keren, S. ;
Zavaleta, C. ;
Cheng, Z. ;
de la Zerda, A. ;
Gheysens, O. ;
Gambhir, S. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (15) :5844-5849
[8]   SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging [J].
Lane, Lucas A. ;
Qian, Ximei ;
Nie, Shuming .
CHEMICAL REVIEWS, 2015, 115 (19) :10489-10529
[9]  
Lim DK, 2011, NAT NANOTECHNOL, V6, P452, DOI [10.1038/nnano.2011.79, 10.1038/NNANO.2011.79]
[10]   CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor [J].
Ma, Ying ;
Promthaveepong, Kittithat ;
Li, Nan .
ANALYTICAL CHEMISTRY, 2016, 88 (16) :8289-8293