Bigdata Enabled Realtime Crowd Surveillance Using Artificial Intelligence And Deep Learning

被引:4
|
作者
Rajendran, Logesh [1 ]
Shankaran, Shyam R. [1 ]
机构
[1] L&T Smart World, Chennai, Tamil Nadu, India
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2021) | 2021年
关键词
Al Based Surveillance; Crowd density; Crowd congestion detection; Crowd analysis; crowd counting; Deep learning;
D O I
10.1109/BigComp51126.2021.00032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
India has in recent years witnessed significant tragedies related to crowds. Statistics indicate that over 70 per cent of Indian crowd-related accidents happened during religious festivities. A devastating humanitarian disaster may occur if crowd safety measures are not enforced and the massive crowds need to be given special attention. Manual crowd control requires extensive human intervention and is more vulnerable to human error and is a time-consuming activity too. In this paper we emphasize on L&T Smart World Al-based crowd management system implemented during the world's largest Kumbh Mela 2019 gathering in Prayagraj using Artificial Intelligence to solve circumstances that go beyond human capability. The data gathered provides the core for a framework for effective crowd management or evacuation strategies to minimize the risk of overwhelmed and dangerous conditions. Deep learning provides the solution to the dense crowd count and management problems. The crowd control analytics system of L&T Smart World has succeeded in maintaining the safety of 23 crore pilgrims visited during the 50 days of Holy Kumbh Mela in Prayagraj, India, demonstrates the efficacy of the solution implemented.
引用
收藏
页码:129 / 132
页数:4
相关论文
共 50 条
  • [31] Artificial Intelligence and Deep Learning in Sensors and Applications
    Yuan, Shyan-Ming
    Hong, Zeng-Wei
    Cheng, Wai-Khuen
    SENSORS, 2024, 24 (10)
  • [32] Artificial intelligence and deep learning for biomedical applications
    Khanna, Pritee
    Tanveer, Mohammad
    Prasad, Mukesh
    Lin, Chin-Teng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13137 - 13137
  • [33] Realtime Anomaly Detection using Trajectory-level Crowd Behavior Learning
    Bera, Aniket
    Kim, Sujeong
    Manocha, Dinesh
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1289 - 1296
  • [34] Applications of Artificial Intelligence and Deep Learning in Glaucoma
    Chen, Dinah
    Ran, Emma Anran
    Tan, Ting Fang
    Ramachandran, Rithambara
    Li, Fei
    Cheung, Carol
    Yousefi, Siamak
    Tham, Clement C. Y.
    Ting, Daniel S. W.
    Zhang, Xiulan
    Al-Aswad, Lama A.
    ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2023, 12 (01): : 80 - 93
  • [35] A Hybrid Gomoku Deep Learning Artificial Intelligence
    Yan, Peizhi
    Feng, Yi
    PROCEEDINGS OF 2018 ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE (AICCC 2018), 2018, : 48 - 52
  • [36] Artificial intelligence and deep learning for biomedical applications
    Multimedia Tools and Applications, 2022, 81 : 13137 - 13137
  • [37] Demystifying artificial intelligence and deep learning in dentistry
    Rodrigues, Jonas Almeida
    Krois, Joachim
    Schwendicke, Falk
    BRAZILIAN ORAL RESEARCH, 2021, 35
  • [38] The unreasonable effectiveness of deep learning in artificial intelligence
    Sejnowski, Terrence J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) : 30033 - 30038
  • [39] Application of Deep Learning for Crowd Anomaly Detection from Surveillance Videos
    Pawar, Karishma
    Attar, Vahida
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 506 - 511
  • [40] Exploration of the new teaching and learning mode enabled by Artificial Intelligence
    Cai, Fei
    Chen, Wanyu
    Zhang, Yijia
    2024 THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND TEACHER EDUCATION, ICAITE 2024, 2024, : 9 - 14