Artificial neural network-based model enhances risk stratification and reduces non-invasive cardiac stress imaging compared to Diamond-Forrester and Morise risk assessment models: A prospective study

被引:6
作者
Isma'eel, Hussain A. [1 ,2 ]
Sakr, George E. [3 ]
Serhan, Mustapha [1 ]
Lamaa, Nader [1 ]
Hakim, Ayman [1 ]
Cremer, Paul C. [4 ]
Jaber, Wael A. [4 ]
Garabedian, Torkom [5 ]
Elhajj, Imad [2 ,6 ]
Abchee, Antoine B. [1 ,2 ]
机构
[1] Amer Univ Beirut, Dept Internal Med, Div Cardiol, POB 11-0236, Beirut 11072020, Lebanon
[2] Amer Univ Beirut, Med Ctr, Vasc Med Program, Beirut, Lebanon
[3] St Joseph Univ, ESIB, Beirut, Lebanon
[4] Cleveland Clin Fdn, Dept Cardiovasc Med, 9500 Euclid Ave, Cleveland, OH 44195 USA
[5] St Elizabeths Med Ctr, Dept Internal Med, Boston, MA USA
[6] Amer Univ Beirut, Dept Elect & Comp Engn, Beirut, Lebanon
关键词
Artificial neural networks (ANN); Diamond-Forrester score; Morise score; stress echocardiography; nuclear stress test; CORONARY-ARTERY-DISEASE; LOGISTIC-REGRESSION; CHEST-PAIN; PREDICTION; DIAGNOSIS; IMPACT; PROBABILITY; VALIDATION; GUIDELINES; MANAGEMENT;
D O I
10.1007/s12350-017-0823-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Coronary artery disease (CAD) accounts for more than half of all cardiovascular events. Stress testing remains the cornerstone for non-invasive assessment of patients with possible or known CAD. Clinical utilization reviews show that most patients presenting for evaluation of stable CAD by stress testing are categorized as low risk prior to the test. Attempts to enhance risk stratification of individuals who are sent for stress testing seem to be more in need today. The present study compares artificial neural networks (ANN)-based prediction models to the other risk models being used in practice (the Diamond-Forrester and the Morise models). In our study, we prospectively recruited patients who were 19 years of age or older, and were being evaluated for coronary artery disease with imaging-based stress tests. For ANN, the network architecture employed a systematic method, where the number of neurons is changed incrementally, and bootstrapping was performed to evaluate the accuracy of the models. We prospectively enrolled 486 patients. The mean age of patients undergoing stress test was 55.2 +/- 11.2 years, 35% were women, and 12% had a positive stress test for ischemic heart disease. When compared to Diamond-Forrester and Morise risk models, the ANN model for predicting ischemia provided higher discriminatory power (DP)(1.61), had a negative predictive value of 98%, Sensitivity 91% [81%-97%], Specificity 65% [60%-79%], positive predictive value 26%, and a potential 59% reduction of non-invasive imaging. The ANN models improved risk stratification when compared to the other risk scores (Diamond-Forrester and Morise) with a 98% negative predictive value and a significant potential reduction in non-invasive imaging tests.
引用
收藏
页码:1601 / 1609
页数:9
相关论文
共 30 条
[11]   ANALYSIS OF PROBABILITY AS AN AID IN THE CLINICAL-DIAGNOSIS OF CORONARY-ARTERY DISEASE [J].
DIAMOND, GA ;
FORRESTER, JS .
NEW ENGLAND JOURNAL OF MEDICINE, 1979, 300 (24) :1350-1358
[12]   COMPUTER-ASSISTED DIAGNOSIS IN THE NON-INVASIVE EVALUATION OF PATIENTS WITH SUSPECTED CORONARY-ARTERY DISEASE [J].
DIAMOND, GA ;
STANILOFF, HM ;
FORRESTER, JS ;
POLLOCK, BH ;
SWAN, HJC .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1983, 1 (02) :444-445
[13]   Guidelines on the management of stable angina pectoris:: Executive summary [J].
Fox, Kim ;
Alonso Garcia, Maria Angeles ;
Ardissino, Diego ;
Buszman, Pawel ;
Camici, Paolo G. ;
Crea, Filippo ;
Daly, Caroline ;
de Backer, Guy ;
Hjemdahl, Paul ;
Lopez-Sendon, Jos ;
Marco, Jean ;
Morais, Joao ;
Pepper, John ;
Sechtem, Udo ;
Simoons, Maarten ;
Thygesen, Kristian .
REVISTA ESPANOLA DE CARDIOLOGIA, 2006, 59 (09) :919-970
[14]   Comparison of artificial neural networks with logistic regression in prediction of in-hospital death after percutaneous transluminal coronary angioplasty [J].
Freeman, RV ;
Eagle, KA ;
Bates, ER ;
Werns, SW ;
Kline-Rogers, E ;
Karavite, D ;
Moscucci, M .
AMERICAN HEART JOURNAL, 2000, 140 (03) :511-520
[15]   A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension [J].
Genders, Tessa S. S. ;
Steyerberg, Ewout W. ;
Alkadhi, Hatem ;
Leschka, Sebastian ;
Desbiolles, Lotus ;
Nieman, Koen ;
Galema, Tjebbe W. ;
Meijboom, W. Bob ;
Mollet, Nico R. ;
de Feyter, Pim J. ;
Cademartiri, Filippo ;
Maffei, Erica ;
Dewey, Marc ;
Zimmermann, Elke ;
Laule, Michael ;
Pugliese, Francesca ;
Barbagallo, Rossella ;
Sinitsyn, Valentin ;
Bogaert, Jan ;
Goetschalckx, Kaatje ;
Schoepf, U. Joseph ;
Rowe, Garrett W. ;
Schuijf, Joanne D. ;
Bax, Jeroen J. ;
de Graaf, Fleur R. ;
Knuuti, Juhani ;
Kajander, Sami ;
van Mieghem, Carlos A. G. ;
Meijs, Matthijs F. L. ;
Cramer, Maarten J. ;
Gopalan, Deepa ;
Feuchtner, Gudrun ;
Friedrich, Guy ;
Krestin, Gabriel P. ;
Hunink, M. G. Myriam .
EUROPEAN HEART JOURNAL, 2011, 32 (11) :1316-1330
[16]   Heart Disease and Stroke Statistics-2013 Update A Report From the American Heart Association [J].
Go, Alan S. ;
Mozaffarian, Dariush ;
Roger, Veronique L. ;
Benjamin, Emelia J. ;
Berry, Jarett D. ;
Borden, William B. ;
Bravata, Dawn M. ;
Dai, Shifan ;
Ford, Earl S. ;
Fox, Caroline S. ;
Franco, Sheila ;
Fullerton, Heather J. ;
Gillespie, Cathleen ;
Hailpern, Susan M. ;
Heit, John A. ;
Howard, Virginia J. ;
Huffman, Mark D. ;
Kissela, Brett M. ;
Kittner, Steven J. ;
Lackland, Daniel T. ;
Lichtman, Judith H. ;
Lisabeth, Lynda D. ;
Magid, David ;
Marcus, Gregory M. ;
Marelli, Ariane ;
Matchar, David B. ;
McGuire, Darren K. ;
Mohler, Emile R. ;
Moy, Claudia S. ;
Mussolino, Michael E. ;
Nichol, Graham ;
Paynter, Nina P. ;
Schreiner, Pamela J. ;
Sorlie, Paul D. ;
Stein, Joel ;
Turan, Tanya N. ;
Virani, Salim S. ;
Wong, Nathan D. ;
Woo, Daniel ;
Turner, Melanie B. .
CIRCULATION, 2013, 127 (01) :E6-E245
[17]  
Hagan M.T., 1996, Neural Network Design
[18]   Emergency management of cardiac chest pain: a review [J].
Herren, KR ;
Mackway-Jones, K .
EMERGENCY MEDICINE JOURNAL, 2001, 18 (01) :6-10
[19]  
Isma'eel H, 2016, ANN RISK MODEL PREDI
[20]   Artificial neural network modeling enhances risk stratification and can reduce downstream testing for patients with suspected acute coronary syndromes, negative cardiac biomarkers, and normal ECGs [J].
Isma'eel, Hussain A. ;
Cremer, Paul C. ;
Khalaf, Shaden ;
Almedawar, Mohamad M. ;
Elhajj, Imad H. ;
Sakr, George E. ;
Jaber, Wael A. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2016, 32 (04) :687-696