Grid Evolution: Joint Dictionary Learning and Sparse Bayesian Recovery for Multiple Off-Grid Targets Localization

被引:25
|
作者
You, Kangyong [1 ,2 ]
Guo, Wenbin [1 ,2 ]
Liu, Yueliang [1 ]
Wang, Wenbo [1 ]
Sun, Zhuo [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Sci & Technol Informat Transmiss & Disseminat Com, Shijiazhuang 050000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Source target localization; compressive sensing; sparse Bayesian learning; off-grid model; Laplace prior;
D O I
10.1109/LCOMM.2018.2863374
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we propose an efficient grid evolution multiple targets localization framework for off-grid targets. First, we propose a more accurate localization model, enabling grid evolution by considering all the grids as random variables to be inferred. Then, the localization problem is formulated as a joint sparsifying dictionary learning and sparse signal recovery problem. Finally, the joint optimization problem is solved under the general framework of sparse Bayesian learning (SBL). Different to previous SBL based localization algorithms, we adopt the hierarchical Laplace distribution for sparse prior, rather than the Sudent's t distribution. We compare the proposed framework with state-of-the-art off-grid targets localization algorithms as well as Cramer-Rao lower bound. Numerical simulations highlight the improved performance of the proposed framework in terms of localization error, noise robustness, and required number of measurements.
引用
收藏
页码:2068 / 2071
页数:4
相关论文
共 50 条
  • [11] Off-Grid Error Calibration for DOA Estimation Based on Sparse Bayesian Learning
    Fu, Haosheng
    Dai, Fengzhou
    Hong, Ling
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16293 - 16307
  • [12] Sparse Bayesian Learning with Jeffreys' Noninformative Prior for Off-Grid DOA Estimation
    Karimi, Mahmood
    Zare, Mohammadreza
    Derakhtian, Mostafa
    SIGNAL PROCESSING, 2025, 230
  • [13] Direction of Arrival Estimation for Off-Grid Signals Based on Sparse Bayesian Learning
    Wu, Xiaohuan
    Zhu, Wei-Ping
    Yan, Jun
    IEEE SENSORS JOURNAL, 2016, 16 (07) : 2004 - 2016
  • [14] Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data
    Lasserre, Marie
    Bidon, Stephanie
    Besson, Olivier
    Le Chevalier, Francois
    SIGNAL PROCESSING, 2015, 111 : 261 - 273
  • [15] Real-Valued Sparse Bayesian Learning for Off-Grid DOA Estimation
    Zheng, Jinghao
    Fang, Zhongchi
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 434 - 438
  • [16] Off-Grid Radar Coincidence Imaging Based on Variational Sparse Bayesian Learning
    Zhou, Xiaoli
    Wang, Hongqiang
    Cheng, Yongqiang
    Qin, Yuliang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [17] Off-Grid Radar Coincidence Imaging Based on Block Sparse Bayesian Learning
    Zhou, Xiaoli
    Wang, Hongqiang
    Cheng, Yongqiang
    Qin, Yuliang
    Xu, Xianwu
    2015 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2015), 2015,
  • [18] A Novel Off-grid DOA Estimation Approach Using Sparse Bayesian Learning
    Jiao, Jianbo
    Pan, Xiang
    OCEANS 2024 - SINGAPORE, 2024,
  • [19] Improved variational sparse Bayesian learning off-grid DOA estimation method
    Wang, Xuhu
    Jin, Xu
    Hou, Yujun
    Xu, Zhenhua
    Tian, Yu
    Zhang, Qunfei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (13): : 134 - 143
  • [20] Off-Grid Direction of Arrival Estimation Based on Weighted Sparse Bayesian Learning
    Zhang, Yi
    Ye, Zhongfu
    Xu, Xu
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 547 - 550