The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids

被引:31
作者
Akiyama, Benjamin M. [1 ,3 ]
Parks, Joseph W. [2 ,3 ]
Stone, Michael D. [2 ,3 ]
机构
[1] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[3] Univ Calif Santa Cruz, Ctr Mol Biol RNA, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SINGLE-MOLECULE FRET; TETRAHYMENA TELOMERASE; REVERSE-TRANSCRIPTASE; ANCHOR SITE; CATALYTIC SUBUNIT; TEMPLATE; COMPLEX; BINDING; ELONGATION; DYNAMICS;
D O I
10.1093/nar/gkv406
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomerase is an enzyme that adds repetitive DNA sequences to the ends of chromosomes and consists of two main subunits: the telomerase reverse transcriptase (TERT) protein and an associated telomerase RNA (TER). The telomerase essential N-terminal (TEN) domain is a conserved region of TERT proposed to mediate DNA substrate interactions. Here, we have employed single molecule telomerase binding assays to investigate the function of the TEN domain. Our results reveal telomeric DNA substrates bound to telomerase exhibit a dynamic equilibrium between two states: a docked conformation and an alternative conformation. The relative stabilities of the docked and alternative states correlate with the number of basepairs that can be formed between the DNA substrate and the RNA template, with more basepairing favoring the docked state. The docked state is further buttressed by the TEN domain and mutations within the TEN domain substantially alter the DNA substrate structural equilibrium. We propose a model in which the TEN domain stabilizes short RNA-DNA duplexes in the active site of the enzyme, promoting the docked state to augment telomerase processivity.
引用
收藏
页码:5537 / 5549
页数:13
相关论文
共 33 条
[1]   ASSEMBLY OF COMPLEX RNAs BY SPLINTED LIGATION [J].
Akiyama, Benjamin M. ;
Stone, Michael D. .
METHODS IN ENZYMOLOGY, VOL 469: BIOPHYSICAL, CHEMICAL, AND FUNCTIONAL PROBES OF RNA STRUCTURE, INTERACTIONS AND FOLDING, PT B, 2009, 469 :27-46
[2]   The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis [J].
Berman, Andrea J. ;
Akiyama, Benjamin M. ;
Stone, Michael D. ;
Cech, Thomas R. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (12) :1371-U84
[3]  
Blackburn E.H., 2011, COLD SPRING HARB PER, P3
[4]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[5]   Tetrahymena telomerase is active as a monomer [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (12) :4794-4804
[6]   TETRAHYMENA TELOMERASE CATALYZES NUCLEOLYTIC CLEAVAGE AND NONPROCESSIVE ELONGATION [J].
COLLINS, K ;
GREIDER, CW .
GENES & DEVELOPMENT, 1993, 7 (7B) :1364-1376
[7]   The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex [J].
Collins, K ;
Gandhi, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8485-8490
[8]   SAFA: Semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments [J].
Das, R ;
Laederach, A ;
Pearlman, SM ;
Herschlag, D ;
Altman, RB .
RNA, 2005, 11 (03) :344-354
[9]   Roles of Telomerase Reverse Transcriptase N-terminal Domain in Assembly and Activity of Tetrahymena Telomerase Holoenzyme [J].
Eckert, Barbara ;
Collins, Kathleen .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (16) :12805-12814
[10]   TELOMERASE IS PROCESSIVE [J].
GREIDER, CW .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (09) :4572-4580