OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE LOCAL DISCONTINUOUS GALERKIN METHODS FOR HIGH ORDER WAVE EQUATIONS

被引:96
作者
Xu, Yan [1 ]
Shu, Chi-Wang [2 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
local discontinuous Galerkin method; high order wave equation; error estimate; energy stability; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; SOLITONS;
D O I
10.1137/11082258X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a general approach for proving optimal L-2 error estimates for the semidiscrete local discontinuous Galerkin (LDG) methods solving linear high order wave equations. The optimal order of error estimates holds not only for the solution itself but also for the auxiliary variables in the LDG method approximating the various order derivatives of the solution. Examples including the one-dimensional third order wave equation, one-dimensional fifth order wave equation, and multidimensional Schrodinger equation are explored to demonstrate this approach. The main idea is to derive energy stability for the various auxiliary variables in the LDG discretization by using the scheme and its time derivatives with different test functions. Special projections are utilized to eliminate the jump terms at the cell boundaries in the error estimate in order to achieve the optimal order of accuracy.
引用
收藏
页码:79 / 104
页数:26
相关论文
共 26 条
[1]  
[Anonymous], 2006, CO FL SO ME, DOI 10.1007/1-84628-205-5
[2]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]   GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
PHYSICA SCRIPTA, 1979, 20 (3-4) :539-544
[5]   SOLITONS IN LASER PHYSICS [J].
BULLOUGH, RK ;
JACK, PM ;
KITCHENSIDE, PW ;
SAUNDERS, R .
PHYSICA SCRIPTA, 1979, 20 (3-4) :364-381
[6]  
Ciarlet P, 1975, FINITE ELEMENT METHO
[7]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[8]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[9]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[10]   Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids [J].
Cockburn, B ;
Kanschat, G ;
Perugia, I ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) :264-285