In this study, Fe3O4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron (II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe3O4 and RGO/Fe3O4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 degrees C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H-2-TPR, H2-TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate (Fe3O4 (80%), RGO/Fe3O4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe3O4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe3O4 catalysts had higher long chain hydrocarbon (C5 +) selectivity values (72% and 67%) and C-2-C-4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hagg iron carbide (chi-Fe5C2) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe3O4 and RGO/Fe3O4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for FTS reaction.