Partial coherent state transforms, G x T-invariant Kahler structures and geometric quantization of cotangent bundles of compact Lie groups

被引:2
作者
Mourao, Jose M. [1 ,2 ]
Nunes, Joao P. [1 ,2 ]
Pereira, Miguel B. [3 ]
机构
[1] Inst Super Tecn, Dept Math, Av Rovisco Pais, Lisbon 1049001, Portugal
[2] Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, Lisbon 1049001, Portugal
[3] Univ Augsburg, Inst Math, Augsburg 86159, Germany
关键词
Hamiltonian flows in imaginary time; Geometric quantization; Coherent state transforms; MOMENTUM CONSTRUCTION; COMPLEX STRUCTURES;
D O I
10.1016/j.aim.2020.107139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the analytic continuation to complex time of the Hamiltonian flow of certain G x T-invariant functions on the cotangent bundle of a compact connected Lie group G with maximal torus T. Namely, we will take the Hamiltonian flows of one G x G-invariant function, h, and one G x T-invariant function, f. Acting with these complex time Hamiltonian flows on G x G-invariant Kahler structures gives new Gx T-invariant, but not G x G-invariant, Kahler structures on T* G. We study the Hilbert spaces corresponding to the quantization of T* G with respect to these non-invariant Kahler structures. On the other hand, by taking the vertical Schrodinger polarization as a starting point, the above G x T-invariant Hamiltonian flows also generate families of mixed polarizations P-0(,sigma), sigma is an element of C, Im sigma > 0. Each of these mixed polarizations is globally given by a direct sum of an integrable real distribution and of a complex distribution that defines a Kahler structure on the leaves of a foliation of T* G. The geometric quantization of T* G with respect to these mixed polarizations gives rise to unitary partial coherent state transforms, corresponding to KSH maps as defined in [11,12]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 22 条
[1]  
Baier T., 2004, COMPACT SYMMET UNPUB
[2]   Potential functions and actions of tori on Kahler manifolds [J].
Burns, D ;
Guillemin, V .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2004, 12 (1-2) :281-303
[3]  
Donaldson Simon, 1999, NO CALIFORNIA SYMPLE, V2, P196
[4]   On the BKS pairing for Kahler quantizations of the cotangent bundle of a Lie group [J].
Florentino, C ;
Matias, P ;
Mourao, J ;
Nunes, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) :180-198
[5]   Geometric quantization, complex structures and the coherent state transform [J].
Florentino, C ;
Matias, P ;
Mourao, J ;
Nunes, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) :303-322
[6]   MOMENTUM CONSTRUCTION ON RICCI-FLAT KAHLER CONES [J].
Futaki, Akito .
TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (01) :21-40
[7]   THE SEGAL-BARGMANN COHERENT-STATE TRANSFORM FOR COMPACT LIE-GROUPS [J].
HALL, BC .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (01) :103-151
[8]   Geometric quantization and the generalized Segal-Bargmann transform for lie groups of compact type [J].
Hall, BC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) :233-268
[9]   Adapted complex structures and the geodesic flow [J].
Hall, Brian C. ;
Kirwin, William D. .
MATHEMATISCHE ANNALEN, 2011, 350 (02) :455-474
[10]   A momentum construction for circle-invariant Kahler metrics [J].
Hwang, AD ;
Singer, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (06) :2285-2325