Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-II censored data with applications

被引:10
作者
Okasha, Hassan [1 ,2 ]
Nassar, Mazen [1 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Zagazig Univ, Fac Commerce, Dept Stat, Zagazig, Egypt
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2022年 / 16卷 / 01期
关键词
Inverse Weibull distribution; maximum likelihood estimation; maximum product of spacing estimation; Renyi entropy; Shannon entropy; BAYESIAN-ESTIMATION; PARAMETERS;
D O I
10.1080/16583655.2022.2046945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper seeks to estimate the entropy for the inverse Weibull distribution using progressively Type-II censored data. To reach this objective, the entropy is defined through three entropy measures, namely, Renyi, q-entropy and Shannon entropy, and two estimation methods are used to estimate them. The first approach to estimate these quantities is the method of maximum likelihood. Furthermore, and for the first time, we consider the method of maximum product of spacing to estimate the mentioned entropy measures. Also, a simulation study is carried out and two real data sets are analysed. The numerical outcomes showed that the maximum likelihood provides good point estimates while the interval estimates based on the maximum product of spacing method have the shortest confidence interval lengths.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
[31]   Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution [J].
El-Sherpieny, El-Sayed A. ;
Almetwally, Ehab M. ;
Muhammed, Hiba Z. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 553
[32]   Parameter estimation for a modified Weibull distribution, for progressively Type-II censored samples [J].
Ng, HKT .
IEEE TRANSACTIONS ON RELIABILITY, 2005, 54 (03) :374-380
[33]   STATISTICAL INFERENCE ON THE ACCELERATED COMPETING FAILURE MODEL FROM THE INVERSE WEIBULL DISTRIBUTION UNDER PROGRESSIVELY TYPE-II CENSORED DATA [J].
Wang, Ying ;
Yan, Zai-Zai .
THERMAL SCIENCE, 2021, 25 (03) :2127-2134
[34]   Parameter Estimation of Inverted Exponentiated Half-Logistic Distribution under Progressive Type-II Censored Data with Competing Risks [J].
Zheng Y. ;
Ye T. ;
Gui W. .
American Journal of Mathematical and Management Sciences, 2024, 43 (01) :21-39
[35]   Bayes estimation of dynamic cumulative residual entropy for Pareto distribution under type-II right censored data [J].
Renjini, K. R. ;
Sathar, E. I. Abdul ;
Rajesh, G. .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (19-20) :8424-8434
[36]   On Burr XII Distribution Analysis Under Progressive Type-II Hybrid Censored Data [J].
Asl, M. Noori ;
Belaghi, R. Arabi ;
Bevrani, H. .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (02) :665-683
[37]   Analysis of Adaptive Progressive Type-II Hybrid Censored Dagum Data with Applications [J].
Mohammed, Heba S. ;
Nassar, Mazen ;
Alotaibi, Refah ;
Elshahhat, Ahmed .
SYMMETRY-BASEL, 2022, 14 (10)
[38]   Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution [J].
Singh S.K. ;
Singh U. ;
Sharma V.K. .
International Journal of System Assurance Engineering and Management, 2013, 4 (3) :241-248
[39]   Estimation of Lindley constant-stress model via product of spacing with Type-II censored accelerated life data [J].
Nassar, Mazen ;
Dey, Sanku ;
Wang, Liang ;
Elshahhat, Ahmed .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (01) :288-314
[40]   Inference for the power-exponential hazard rate distribution under progressive type-II censored data [J].
Tarvirdizade, Bahman ;
Nematollahi, Nader .
JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2021, 24 (06) :1169-1212