Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-II censored data with applications

被引:10
作者
Okasha, Hassan [1 ,2 ]
Nassar, Mazen [1 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Zagazig Univ, Fac Commerce, Dept Stat, Zagazig, Egypt
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2022年 / 16卷 / 01期
关键词
Inverse Weibull distribution; maximum likelihood estimation; maximum product of spacing estimation; Renyi entropy; Shannon entropy; BAYESIAN-ESTIMATION; PARAMETERS;
D O I
10.1080/16583655.2022.2046945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper seeks to estimate the entropy for the inverse Weibull distribution using progressively Type-II censored data. To reach this objective, the entropy is defined through three entropy measures, namely, Renyi, q-entropy and Shannon entropy, and two estimation methods are used to estimate them. The first approach to estimate these quantities is the method of maximum likelihood. Furthermore, and for the first time, we consider the method of maximum product of spacing to estimate the mentioned entropy measures. Also, a simulation study is carried out and two real data sets are analysed. The numerical outcomes showed that the maximum likelihood provides good point estimates while the interval estimates based on the maximum product of spacing method have the shortest confidence interval lengths.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
[21]   Bayes Estimation for the Rayleigh-Weibull Distribution Based on Progressive Type-II Censored Samples for Cancer Data in Medicine [J].
Akdam, Neriman .
SYMMETRY-BASEL, 2023, 15 (09)
[22]   Exponentiated Generalized Inverse Flexible Weibull Distribution: Bayesian and Non-Bayesian Estimation Under Complete and Type II Censored Samples with Applications [J].
El-Morshedy, M. ;
Eliwa, M. S. ;
El-Gohary, A. ;
Almetwally, Ehab M. ;
EL-Desokey, R. .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) :413-434
[23]   Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes [J].
AL Sobhi, Mashail M. ;
Soliman, Ahmed A. .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) :1180-1192
[24]   Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-II censored test [J].
Ren, Haiping ;
Zhang, Ziwen ;
Gong, Qin .
AIMS MATHEMATICS, 2025, 10 (04) :9378-9414
[25]   Bayesian and Classical Inference under Type-II Censored Samples of the Extended Inverse Gompertz Distribution with Engineering Applications [J].
Elshahhat, Ahmed ;
Aljohani, Hassan M. ;
Afify, Ahmed Z. .
ENTROPY, 2021, 23 (12)
[26]   The Lehmann type II inverse Weibull distribution in the presence of censored data [J].
Tomazella, Vera L. D. ;
Ramos, Pedro L. ;
Ferreira, Paulo H. ;
Mota, Alex L. ;
Louzada, Francisco .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) :7057-7073
[27]   MAXIMUM PRODUCT SPACING ESTIMATION FOR ODD LINDLEY HALF LOGISTIC DISTRIBUTION UNDER PROGRESSIVE TYPE-II CENSORING WITH BINOMIAL REMOVALS [J].
Ozkan, Egemen ;
Simsek, Gulhayat Golbasi ;
Tanis, Caner .
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 2024, 31 (06) :1382-1391
[28]   Estimation of Entropy for Generalized Rayleigh Distribution under Progressively Type-II Censored Samples [J].
Ren, Haiping ;
Gong, Qin ;
Hu, Xue .
AXIOMS, 2023, 12 (08)
[29]   Estimation in the Complementary Exponential Geometric Distribution Based on Progressive Type-II Censored Data [J].
Gurunlu Alma, Ozlem ;
Arabi Belaghi, Reza .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2020, 8 (04) :409-441
[30]   Statistical Inference for the Extended Weibull Distribution Based on Adaptive Type-II Progressive Hybrid Censored Competing Risks Data [J].
Nassr, Said Gamal ;
Almetwally, Ehab Mohamed ;
Azm, Wad Shehta Abu El .
THAILAND STATISTICIAN, 2021, 19 (03) :547-564