Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-II censored data with applications

被引:10
作者
Okasha, Hassan [1 ,2 ]
Nassar, Mazen [1 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Zagazig Univ, Fac Commerce, Dept Stat, Zagazig, Egypt
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2022年 / 16卷 / 01期
关键词
Inverse Weibull distribution; maximum likelihood estimation; maximum product of spacing estimation; Renyi entropy; Shannon entropy; BAYESIAN-ESTIMATION; PARAMETERS;
D O I
10.1080/16583655.2022.2046945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper seeks to estimate the entropy for the inverse Weibull distribution using progressively Type-II censored data. To reach this objective, the entropy is defined through three entropy measures, namely, Renyi, q-entropy and Shannon entropy, and two estimation methods are used to estimate them. The first approach to estimate these quantities is the method of maximum likelihood. Furthermore, and for the first time, we consider the method of maximum product of spacing to estimate the mentioned entropy measures. Also, a simulation study is carried out and two real data sets are analysed. The numerical outcomes showed that the maximum likelihood provides good point estimates while the interval estimates based on the maximum product of spacing method have the shortest confidence interval lengths.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
[11]   Estimation for Exponentiated Weibull Distribution under Accelerated Multiple Type-II Censored Samples [J].
Abushal, Tahani A. .
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (06) :1191-1210
[12]   Analysis of progressive type-II censored gamma distribution [J].
Dey, Sanku ;
Elshahhat, Ahmed ;
Nassar, Mazen .
COMPUTATIONAL STATISTICS, 2023, 38 (01) :481-508
[13]   Inference for Unit Inverse Weibull Distribution Under Block Progressive Type-II Censoring [J].
Singh, Kundan ;
Tripathi, Yogesh Mani ;
Lodhi, Chandrakant ;
Wang, Liang .
JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (03)
[14]   Statistical inference of the stress-strength reliability for inverse Weibull distribution under an adaptive progressive type-II censored sample [J].
Hu, Xue ;
Ren, Haiping .
AIMS MATHEMATICS, 2023, 8 (12) :28465-28487
[15]   Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring [J].
Muhammed H.Z. ;
Almetwally E.M. .
Annals of Data Science, 2023, 10 (02) :481-512
[16]   Reliability Estimation of Modified Weibull Distribution with Type-II Hybrid Censored Data [J].
Singh, Bhupendra ;
Goel, Reetu .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3) :1395-1407
[17]   ESTIMATION IN INVERSE WEIBULL DISTRIBUTION BASED ON RANDOMLY CENSORED DATA [J].
Kumar, Kapil ;
Kumar, Indrajeet .
STATISTICA, 2019, 79 (01) :47-74
[18]   Statistical inferences for new Weibull-Pareto distribution under an adaptive type-ii progressive censored data [J].
El-Sagheer, Rashad M. ;
Mahmoud, Mohamed A. W. ;
Abdallah, Samah H. M. .
JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2018, 21 (06) :1021-1057
[19]   Estimation and Prediction for Flexible Weibull Distribution Based on Progressive Type II Censored Data [J].
Bdair, O. M. ;
Abu Awwad, R. R. ;
Abufoudeh, G. K. ;
Naser, M. F. M. .
COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2020, 8 (03) :255-277
[20]   Analysis of progressive type-II censored gamma distribution [J].
Sanku Dey ;
Ahmed Elshahhat ;
Mazen Nassar .
Computational Statistics, 2023, 38 :481-508