Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-II censored data with applications

被引:10
|
作者
Okasha, Hassan [1 ,2 ]
Nassar, Mazen [1 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Zagazig Univ, Fac Commerce, Dept Stat, Zagazig, Egypt
来源
关键词
Inverse Weibull distribution; maximum likelihood estimation; maximum product of spacing estimation; Renyi entropy; Shannon entropy; BAYESIAN-ESTIMATION; PARAMETERS;
D O I
10.1080/16583655.2022.2046945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper seeks to estimate the entropy for the inverse Weibull distribution using progressively Type-II censored data. To reach this objective, the entropy is defined through three entropy measures, namely, Renyi, q-entropy and Shannon entropy, and two estimation methods are used to estimate them. The first approach to estimate these quantities is the method of maximum likelihood. Furthermore, and for the first time, we consider the method of maximum product of spacing to estimate the mentioned entropy measures. Also, a simulation study is carried out and two real data sets are analysed. The numerical outcomes showed that the maximum likelihood provides good point estimates while the interval estimates based on the maximum product of spacing method have the shortest confidence interval lengths.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
  • [1] Bayesian Estimation for Inverse Weibull Distribution under Progressive Type-II Censored Data with Beta-Binomial Removals
    Vishwakarma, Pradeep K.
    Kaushik, Arun
    Pandey, Aakriti
    Singh, Umesh
    Singh, Sanjay K.
    AUSTRIAN JOURNAL OF STATISTICS, 2018, 47 (01) : 77 - 94
  • [2] Statistical inferences for the extended inverse Weibull distribution under progressive type-II censored sample with applications
    Tashkandy, Yusra A.
    Almetwally, Ehab M.
    Ragab, Randa
    Gemeay, Ahmed M.
    Abd El-Raouf, M. M.
    Khosa, Saima Khan
    Hussam, Eslam
    Bakr, M. E.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 493 - 502
  • [3] Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes
    Almetwally E.M.
    Almongy H.M.
    Rastogi M.K.
    Ibrahim M.
    Almetwally, E.M. (ehabxp_2009@hotmail.com), 1600, Springer Science and Business Media Deutschland GmbH (07): : 257 - 279
  • [4] Entropy Estimation of Inverse Weibull Distribution under Adaptive Type-II Progressive Hybrid Censoring Schemes
    Xu, Rong
    Gui, Wenhao
    SYMMETRY-BASEL, 2019, 11 (12):
  • [5] Bayesian Estimation of Entropy for Burr Type XII Distribution under Progressive Type-II Censored Data
    Wang, Xinjing
    Gui, Wenhao
    MATHEMATICS, 2021, 9 (04) : 1 - 19
  • [6] Estimation for inverse Weibull distribution under progressive type-II censoring scheme
    Ren, Haiping
    Hu, Xue
    AIMS MATHEMATICS, 2023, 8 (10): : 22808 - 22829
  • [7] Estimation of entropy for inverse Weibull distribution under multiple censored data
    Hassan, Anna S.
    Zaky, Ahmed N.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 331 - 337
  • [8] On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications
    Alam, Farouq Mohammad A.
    Nassar, Mazen
    AXIOMS, 2023, 12 (08)
  • [9] Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data
    Kundu, Debasis
    Howlader, Hatem
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) : 1547 - 1558
  • [10] Progressive Type-II Censored Samples for Bivariate Weibull Distribution with Economic and Medical Applications
    El-Sherpieny E.-S.A.
    Muhammed H.Z.
    Almetwally E.M.
    Annals of Data Science, 2024, 11 (01) : 51 - 85