State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method

被引:42
作者
Chung, Dae-Won [1 ]
Ko, Jae-Ha [1 ]
Yoon, Keun-Young [1 ]
机构
[1] Honam Univ, Dept Elect Engn, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
State-of-charge; Battery; SOC estimation error; Long short-term memory; Deep learning; OPEN-CIRCUIT VOLTAGE; KALMAN FILTER; MODEL; MANAGEMENT; DEGRADATION; NETWORKS; HEALTH;
D O I
10.1007/s42835-021-00954-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effects of ambient temperature and the flat form characteristics of the open circuit voltage state-of-charge (SOC) curve for lithium iron phosphate batteries are the major issues that influence the accuracy of the SOC estimation, which is critical for estimating the driving range of electric vehicles, and the optimal charge control of batteries to prevent the sudden loss of power in battery-powered systems. We proposed a SOC estimation method by using a long short-term memory (LSTM)-recurrent neural network (RNN) to reduce the SOC estimation errors, and to develop a model for the sophisticated battery behaviors under varying ambient temperatures, including time-variable current, voltage, and temperature conditions. The proposed method was evaluated using data from the LiFePO4 battery obtained by the dynamic stress test. The experimental results show that the proposed method can accurately learn the influence of ambient temperatures on the battery and also estimate the battery's SOC under varying temperatures with root mean square errors less than 1.5% and mean average errors less than 1%. Moreover, the proposed method also provides a sufficient SOC estimation under other temperature conditions. The main contribution of this study is the comprehensive explanation and implementation process of the data-based DL approach for the SOC estimation of the LIBs in the following aspects, (1) An LSTM-RNN was trained to model the complex battery dynamics under varying ambient temperatures. (2) The proposed method is model-free and data-driven approach, which means there is no need to construct OCV-SOC lookup tables under varying temperatures in order to pick an appropriate equivalent circuit model. The proposed method can be extended for the SOC estimation of other types of lithium batteries.
引用
收藏
页码:1931 / 1945
页数:15
相关论文
共 31 条
[1]   Support Vector Machines Used to Estimate the Battery State of Charge [J].
Alvarez Anton, Juan Carlos ;
Garcia Nieto, Paulino Jose ;
Blanco Viejo, Cecilio ;
Vilan Vilan, Jose Antonio .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (12) :5919-5926
[2]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[3]   State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem Christopher .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8773-8783
[4]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739
[5]   A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range [J].
Feng, Fei ;
Lu, Rengui ;
Zhu, Chunbo .
ENERGIES, 2014, 7 (05) :3004-3032
[6]   A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations [J].
Hannan, M. A. ;
Lipu, M. S. H. ;
Hussain, A. ;
Mohamed, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 78 :834-854
[7]   Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles [J].
He, Hongwen ;
Zhang, Xiaowei ;
Xiong, Rui ;
Xu, Yongli ;
Guo, Hongqiang .
ENERGY, 2012, 39 (01) :310-318
[8]   State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation [J].
He, Wei ;
Williard, Nicholas ;
Chen, Chaochao ;
Pecht, Michael .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 62 :783-791
[9]   Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries [J].
Hu, Xiaosong ;
Li, Shengbo ;
Peng, Huei ;
Sun, Fengchun .
JOURNAL OF POWER SOURCES, 2012, 217 :209-219
[10]  
Jain Y.K., 2011, International Journal of Computer and Communication Technology, V2, P45