Beyond the AJR: "Deep Learning Using Chest Radiographs to Identify High- Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model"

被引:1
|
作者
Patel, Bhavik N. [1 ]
Langlotz, Curtis P. [1 ]
机构
[1] Stanford Univ, Dept Radiol, Sch Med, 300 Pasteur Dr, Stanford, CA 94305 USA
关键词
D O I
10.2214/AJR.20.25334
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
[No abstract available]
引用
收藏
页码:521 / 521
页数:1
相关论文
共 50 条
  • [1] Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model
    Lu, Michael T.
    Raghu, Vineet K.
    Mayrhofer, Thomas
    Aerts, Hugo J. W. L.
    Hoffmann, Udo
    ANNALS OF INTERNAL MEDICINE, 2020, 173 (09) : 704 - +
  • [2] Deep learning to identify high-risk smokers for lung cancer screening from chest radiographs.
    Raghu, Vineet
    Mayrhofer, Thomas
    Aerts, Hugo
    Hoffmann, Udo
    Lu, Michael T.
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [3] Beyond the AJR: Deep Learning Model for Risk- Based Breast Cancer Screening
    Yoon, Jung Hyun
    Kim, Eun-Kyung
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 221 (01) : 141 - 141
  • [4] Deep learning using computed tomography to identify high-risk patients for acute small bowel obstruction: development and validation of a prediction model : a retrospective cohort study
    Oh, Seungmin
    Ryu, Jongbin
    Shin, Ho-Jung
    Song, Jeong Ho
    Son, Sang-Yong
    Hur, Hoon
    Han, Sang-Uk
    INTERNATIONAL JOURNAL OF SURGERY, 2023, 109 (12) : 4091 - 4100
  • [5] Validation of a Deep Learning-Based Model to Predict Lung Cancer Risk Using Chest Radiographs and Electronic Medical Record Data
    Raghu, Vineet K.
    Walia, Anika S.
    Zinzuwadia, Aniket N.
    Goiffon, Reece J.
    Shepard, Jo-Anne O.
    Aerts, Hugo J. W. L.
    Lennes, Inga T.
    Lu, Michael T.
    JAMA NETWORK OPEN, 2022, 5 (12) : E2248793
  • [6] A risk prediction model for selecting high-risk population for computed tomography lung cancer screening in China
    Guo, Lan-Wei
    Lyu, Zhang-Yan
    Meng, Qing-Cheng
    Zheng, Li-Yang
    Chen, Qiong
    Liu, Yin
    Xu, Hui-Fang
    Kang, Rui-Hua
    Zhang, Lu-Yao
    Cao, Xiao-Qin
    Liu, Shu-Zheng
    Sun, Xi-Bin
    Zhang, Jian-Gong
    Zhang, Shao-Kai
    LUNG CANCER, 2022, 163 : 27 - 34
  • [7] Opportunistic Osteoporosis Screening Using Chest Radiographs With Deep Learning: Development and External Validation With a Cohort Dataset
    Jang, Miso
    Kim, Mingyu
    Bae, Sung Jin
    Lee, Seung Hun
    Koh, Jung-Min
    Kim, Namkug
    JOURNAL OF BONE AND MINERAL RESEARCH, 2022, 37 (02) : 369 - 377
  • [8] Validation of the Sybil Deep Learning Lung Cancer Risk Prediction Model in Three Independent Screening Studies
    Aro, R. Phellan
    Lam, S.
    Warkentin, M. T.
    Liu, G.
    Diergaarde, B.
    Yuan, J. -M.
    Wilson, D. O.
    Meza, R.
    Myers, R.
    Hung, R. J.
    JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (10) : S59 - S60
  • [9] Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening
    Katki, Hormuzd A.
    Kovalchik, Stephanie A.
    Petito, Lucia C.
    Cheung, Li C.
    Jacobs, Eric
    Jemal, Ahmedin
    Berg, Christine D.
    Chaturvedi, Anil K.
    ANNALS OF INTERNAL MEDICINE, 2018, 169 (01) : 10 - +
  • [10] Computed tomography screening for lung cancer: Results of ten years of annual screening and validation of cosmos prediction model
    Veronesi, G.
    Maisonneuve, P.
    Rampinelli, C.
    Bertolotti, R.
    Petrella, F.
    Spaggiari, L.
    Bellomi, M.
    LUNG CANCER, 2013, 82 (03) : 426 - 430