A sharp form of the Moser-Trudinger inequality on a compact Riemannian surface

被引:93
作者
Yang, Yunyan [1 ]
机构
[1] Renmin Univ China, Informat Sch, Dept Math, Beijing 100872, Peoples R China
关键词
Moser-Trudinger inequality; blow-up analysis; extremal function; EXTREMAL-FUNCTIONS; SCALAR CURVATURE; 2; DIMENSIONS;
D O I
10.1090/S0002-9947-07-04272-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a sharp form of the Moser-Trudinger inequality is established on a compact Riemannian surface via the method of blow-up analysis, and the existence of an extremal function for such an inequality is proved.
引用
收藏
页码:5761 / 5776
页数:16
相关论文
共 17 条
[1]  
[Anonymous], COMM PARTIAL DIFFERE
[2]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[3]  
CARLESON L, 1986, B SCI MATH, V110, P113
[4]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[5]  
Ding W., 1997, Asian J. Math., V1, P230
[6]  
DRUET O, 2002, MEMOIRS AMS, V106, P761
[7]   CONFORMAL METRICS WITH PRESCRIBED SCALAR CURVATURE [J].
ESCOBAR, JF ;
SCHOEN, RM .
INVENTIONES MATHEMATICAE, 1986, 86 (02) :243-254
[8]   EXTREMAL-FUNCTIONS FOR THE TRUDINGER-MOSER INEQUALITY IN 2 DIMENSIONS [J].
FLUCHER, M .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) :471-497
[9]   SHARP BORDERLINE SOBOLEV INEQUALITIES ON COMPACT RIEMANNIAN-MANIFOLDS [J].
FONTANA, L .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :415-454
[10]  
Li Y., 2001, J. Partial Differ. Equ, V14, P163