Anisotropic parallel coordinates with adjustment based on distribution features

被引:3
作者
Chen, Hongqian [1 ]
Li, Hui [2 ]
Fang, Yi [1 ]
Chen, Yi [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing Key Lab Big Data Technol Food Safety, Beijing, Peoples R China
[2] Beijing Union Univ, Coll Management, Beijing, Peoples R China
基金
北京市自然科学基金;
关键词
Data visualization; Parallel coordinate; Anisotropic coordinate; Distribution feature; VISUALIZATION; REDUCTION;
D O I
10.1007/s12650-015-0320-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To measure the confidence degree of correlation between data dimensions in multidimensional data, we present a visualization method named anisotropic parallel coordinates. The method introduces distribution features of data into classical parallel coordinates scheme. The method first divides the data in each dimension into segments and obtains the frequency of data in each segment. The histogram is adopted to express the distribution of data in each dimension. The coordinate axis of each dimension is adjusted according to the corresponding distribution features. The principle of the adjustment is to amplify the occupation in the axis for the data segment with biggish frequency, while compacting the segment with lesser frequency. The adjustment can improve the capability of expressing the correlativity between the adjacent dimensions effectively in the final visualization result. The experimental results prove the method presented in the paper can achieve more effective expression to the correlativity between the adjacent dimension data. The improved effect can enhance the efficiency of the visual interaction and the visual analysis for the multidimensional data.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 31 条
[1]   Uncovering clusters in crowded parallel coordinates visualizations [J].
Artero, AO ;
de Oliveira, MCF ;
Levkowitz, H .
IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2004, PROCEEDINGS, 2004, :81-88
[2]  
Baldonado MQW, 2000, P WORK C ADV VIS INT, DOI [10.1145/345513.345271, DOI 10.1145/345513.345271]
[3]   Pargnostics: Screen-Space Metrics for Parallel Coordinates [J].
Dasgupta, Aritra ;
Kosara, Robert .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) :1017-1026
[4]   Enabling automatic clutter reduction in parallel coordinate plots [J].
Ellis, Geoffrey ;
Dix, Alan .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (05) :717-723
[5]  
Elmqvist N, 2008, IEEE T VIS COMPUT GR, V14, P1141, DOI 10.1109/TVCG.2008.153
[6]   An interactive 3D integration of parallel coordinates and Star Glyphs [J].
Fanea, E ;
Carpendale, S ;
Isenberg, T .
INFOVIS 05: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, PROCEEDINGS, 2005, :149-156
[7]   Angular Histograms: Frequency-Based Visualizations for Large, High Dimensional Data [J].
Geng, Zhao ;
Peng, ZhenMin ;
Laramee, Robert S. ;
Walker, Rick ;
Roberts, Jonathan C. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2572-2580
[8]   Angular brushing of extended parallel coordinates [J].
Hauser, H ;
Ledermann, F ;
Doleisch, H .
INFOVIS 2002: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION 2002, 2002, :127-130
[9]  
Heinrich J, 2012, EUROGRAPHICS STATE A, P22, DOI [10.2312/conf/EG2013/stars/095-116, DOI 10.2312/CONF/EG2013/STARS/095-116]
[10]  
Inselberg A, 1990, P IEEE VIS, V90, P1990