A new inertial double-projection method for solving variational inequalities

被引:43
作者
Gibali, Aviv [1 ,2 ]
Dang Van Hieu [3 ]
机构
[1] ORT Braude Coll, Dept Math, IL-2161002 Karmiel, Israel
[2] Univ Haifa, Ctr Math & Sci Computat, IL-3498838 Haifa, Israel
[3] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Subgradient extragradient method; inertial effect; variational inequality; monotone operator; Lipschitz continuity; MAXIMAL MONOTONE-OPERATORS; EXTRAGRADIENT METHOD; STRONG-CONVERGENCE; COMMON SOLUTIONS; ALGORITHM; EQUILIBRIUM; POINTS;
D O I
10.1007/s11784-019-0726-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new algorithm of inertial form for solving monotone variational inequalities (VI) in real Hilbert spaces. Motivated by the subgradient extragradient method, we incorporate the inertial technique to accelerate the convergence of the proposed method. Under standard and mild assumption of monotonicity and Lipschitz continuity of the VI associated mapping, we establish the weak convergence of the scheme. Several numerical examples are presented to illustrate the performance of our method as well as comparing it with some related methods in the literature.
引用
收藏
页数:21
相关论文
共 37 条
[1]   Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space [J].
Alvarez, F .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) :773-782
[2]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[3]  
[Anonymous], 1984, VARIATIONAL QUASIVAR
[4]  
Antipin A. S., 1976, Ekonom. i Mat. Metody, V12, P1164
[5]  
Aubin J.P., 1984, Applied Nonlinear Analysis
[6]   An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Laszlo, Szilard Csaba .
EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) :3-25
[7]   Inertial Douglas-Rachford splitting for monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert ;
Hendrich, Christopher .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :472-487
[8]   An extragradient-like approximation method for variational inequality problems and fixed point problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :205-215
[9]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[10]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845