Supercritical carbon dioxide enhanced natural gas recovery from kerogen micropores

被引:9
作者
Bin Yu, Kai [1 ]
Bowers, Geoffrey M. [2 ]
Yazaydin, Ozgur [1 ]
机构
[1] UCL, Dept Chem Engn, London WC1E 7JE, England
[2] St Marys Coll Maryland, Dept Chem & Biochem, St Marys City, MD 20686 USA
基金
英国工程与自然科学研究理事会;
关键词
Molecular simulation; Carbon sequestration; Adsorption kinetics; Hydraulic fracturing; Enhanced gas recovery; SHALE-GAS; MOLECULAR SIMULATION; COMPETITIVE ADSORPTION; METHANE ADSORPTION; CO2; SEQUESTRATION; MARCELLUS SHALE; ORGANIC TYPE; SORPTION; DYNAMICS; MOISTURE;
D O I
10.1016/j.jcou.2022.102105
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the global energy demand increases, a sustainable and environmentally friendly methane (CH4) extraction technique must be developed to assist in the transition off of fossil fuels. In recent years, supercritical carbon dioxide (CO2) has been poised as a candidate for enhanced gas recovery (EGR) from CH4-rich source rocks, potentially with the reservoir serving as a carbon sink for CO2. However, the underlying molecular-scale mechanisms of CO2-EGR processes are still poorly understood. Using constant chemical potential molecular dynamics (C mu MD), this study investigates the CH4 recovery process via supercritical CO2 injection into immature (Type I-A) and overmature (Type II-D) kerogens in real-time and at reservoir conditions (365 K and 275 bar). A pseudo-second order (PSO) rate law was used to quantify the adsorption and desorption kinetics of CO2 and CH4. The kinetics of simultaneous adsorption/desorption are rapid in immature kerogen due to better connected pore volume facilitating fluid diffusion, whereas in overmature kerogen, the structural heterogeneity hinders fluid diffusion. Estimated second order kinetic rate coefficients reveal that CO2 adsorption and CH4 desorption in Type I-A are about two times and an order of magnitude faster, respectively, compared to those of in Type II-D. Furthermore, overmature Type II-D kerogen contains inaccessible micropores which prevent full recovery of CH4. For every CH4 molecule replaced, at least two and six CO2 molecules are adsorbed in Type-II-D and Type I-A kerogens, respectively. Overall, this study shows that CO(2 )injection can achieve 90 % and 65 % CH4 recovery in Type I-A and Type II-D kerogens, respectively.
引用
收藏
页数:10
相关论文
共 97 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]  
[Anonymous], 2016, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States
[3]  
[Anonymous], 2015, Technically recoverable shale oil and shale gas resources
[4]   Molecular simulation study of CO2/CH4 adsorption on realistic heterogeneous shale surfaces [J].
Babatunde, Kawthar Adewumi ;
Negash, Berihun Mamo ;
Mojid, Muhammed Rashik ;
Ahmed, Tigabwa Y. ;
Jufar, Shiferaw Regassa .
APPLIED SURFACE SCIENCE, 2021, 543
[5]  
Ballard A.L., 2002, J SUPRAMOL CHEM, V2, P385, DOI [DOI 10.1016/S1472-7862, 10.1016/S1472-7862, 10.1016/S1472-7862(03)00063-7, DOI 10.1016/S1472-7862(03)00063-7]
[6]   Diffusion Behavior of Methane in 3D Kerogen Models [J].
Bin Yu, Kai ;
Bowers, Geoffrey M. ;
Loganathan, Narasimhan ;
Kalinichev, Andrey G. ;
Yazaydin, A. Ozgur .
ENERGY & FUELS, 2021, 35 (20) :16515-16526
[7]   Promoting transparency and reproducibility in enhanced molecular simulations [J].
Bonomi, Massimiliano ;
Bussi, Giovanni ;
Camilloni, Carlo ;
Tribello, Gareth A. ;
Banas, Pavel ;
Barducci, Alessandro ;
Bernetti, Mattia ;
Bolhuis, Peter G. ;
Bottaro, Sandro ;
Branduardi, Davide ;
Capelli, Riccardo ;
Carloni, Paolo ;
Ceriotti, Michele ;
Cesari, Andrea ;
Chen, Haochuan ;
Chen, Wei ;
Colizzi, Francesco ;
De, Sandip ;
De La Pierre, Marco ;
Donadio, Davide ;
Drobot, Viktor ;
Ensing, Bernd ;
Ferguson, Andrew L. ;
Filizola, Marta ;
Fraser, James S. ;
Fu, Haohao ;
Gasparotto, Piero ;
Gervasio, Francesco Luigi ;
Giberti, Federico ;
Gil-Ley, Alejandro ;
Giorgino, Toni ;
Heller, Gabriella T. ;
Hocky, Glen M. ;
Iannuzzi, Marcella ;
Invernizzi, Michele ;
Jelfs, Kim E. ;
Jussupow, Alexander ;
Kirilin, Evgeny ;
Laio, Alessandro ;
Limongelli, Vittorio ;
Lindorff-Larsen, Kresten ;
Lohr, Thomas ;
Marinelli, Fabrizio ;
Martin-Samos, Layla ;
Masetti, Matteo ;
Meyer, Ralf ;
Michaelides, Angelos ;
Molteni, Carla ;
Morishita, Tetsuya ;
Nava, Marco .
NATURE METHODS, 2019, 16 (08) :670-673
[8]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/C7EE02342A, 10.1039/c7ee02342a]
[9]   Gas transport in shale matrix coupling multilayer adsorption and pore confinement effect [J].
Chai, Di ;
Yang, Gang ;
Fan, Zhaoqi ;
Li, Xiaoli .
CHEMICAL ENGINEERING JOURNAL, 2019, 370 :1534-1549
[10]   High-pressure adsorption of gases on shales: Measurements and modeling [J].
Chareonsuppanimit, Pongtorn ;
Mohammad, Sayeed A. ;
Robinson, Robert L., Jr. ;
Gasem, Khaled A. M. .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2012, 95 :34-46