Multinomial Sampling of Latent Variables for Hierarchical Change-Point Detection

被引:3
作者
Romero-Medrano, Lorena [1 ,2 ]
Moreno-Munoz, Pablo [3 ]
Artes-Rodriguez, Antonio [1 ,2 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes, Spain
[2] Evidence Based Behav eB2, Leganes, Spain
[3] Tech Univ Denmark DTU, Sect Cognit Syst, Lyngby, Denmark
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2022年 / 94卷 / 02期
基金
欧洲研究理事会;
关键词
Bayesian inference; Change-point detection (CPD); Latent variable models; Multinomial likelihoods; ALGORITHM;
D O I
10.1007/s11265-021-01705-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bayesian change-point detection, with latent variable models, allows to perform segmentation of high-dimensional time-series with heterogeneous statistical nature. We assume that change-points lie on a lower-dimensional manifold where we aim to infer a discrete representation via subsets of latent variables. For this particular model, full inference is computationally unfeasible and pseudo-observations based on point-estimates of latent variables are used instead. However, if their estimation is not certain enough, change-point detection gets affected. To circumvent this problem, we propose a multinomial sampling methodology that improves the detection rate and reduces the delay while keeping complexity stable and inference analytically tractable. Our experiments show results that outperform the baseline method and we also provide an example oriented to a human behavioral study.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 16 条
[1]  
Adams R.P., 2007, ARXIV PREPRINT ARXIV
[2]  
Agudelo-Espana D., 2020, Bayesian Online Prediction of Change Points
[3]  
[Anonymous], 2010, Proceedings of the 27th International Conference on Machine Learning
[4]  
Berrouiguet S., 2018, COMBINING CONTINUOUS
[5]   On-line expectation-maximization algorithm for latent data models [J].
Cappe, Olivier ;
Moulines, Eric .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 :593-613
[6]   Exact and efficient Bayesian inference for multiple changepoint problems [J].
Fearnhead, P .
STATISTICS AND COMPUTING, 2006, 16 (02) :203-213
[7]   An algorithm for optimal partitioning of data on an interval [J].
Jackson, B ;
Scargle, JD ;
Barnes, D ;
Arabhi, S ;
Alt, A ;
Gioumousis, P ;
Gwin, E ;
Sangtrakulcharoen, P ;
Tan, L ;
Tsai, TT .
IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (02) :105-108
[8]  
McLachlan G. J., 1988, MIXTURE MODELS INFER, V38
[9]   Change-point detection in hierarchical circadian models [J].
Moreno-Munoz, Pablo ;
Ramirez, David ;
Artes-Rodriguez, Antonio .
PATTERN RECOGNITION, 2021, 113
[10]  
Moreno-Muñoz P, 2020, INT CONF ACOUST SPEE, P3582, DOI [10.1109/icassp40776.2020.9053853, 10.1109/ICASSP40776.2020.9053853]