Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

被引:25
作者
Barta, Zsolt [2 ]
Reczey, Kati [2 ]
Zacchi, Guido [1 ]
机构
[1] Lund Univ, Dept Chem Engn, S-22100 Lund, Sweden
[2] Budapest Univ Technol & Econ, Dept Appl Biotechnol & Food Sci, H-1111 Budapest, Hungary
关键词
STEAM PRETREATMENT; IMPREGNATION; H2SO4; SO2;
D O I
10.1186/1754-6834-3-21
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus (TM). Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results: Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions: Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
引用
收藏
页数:11
相关论文
共 31 条
[1]   A review of biogas purification processes [J].
Abatzoglou, Nicolas ;
Boivin, Steve .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2009, 3 (01) :42-71
[2]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[3]   Sweet Sorghum as Feedstock for Ethanol Production: Enzymatic Hydrolysis of Steam-Pretreated Bagasse [J].
Balint Sipos ;
Reczey, Jutka ;
Somorai, Zsolt ;
Kadar, Zsofia ;
Dienes, Dora ;
Reczey, Kati .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2009, 153 (1-2) :151-162
[4]  
Barta Z., 2010, ENZYME RES
[5]  
Barta Z., 2010, Chem Biochem Eng Q, V3, P301
[6]   Production of fuel ethanol from steam-explosion pretreated olive tree pruning [J].
Cara, Cristobal ;
Ruiz, Encarnacion ;
Ballesteros, Mercedes ;
Manzanares, Paloma ;
Negro, M. Jose ;
Castro, Eulogio .
FUEL, 2008, 87 (06) :692-700
[7]   Ethanol can contribute to energy and environmental goals [J].
Farrell, AE ;
Plevin, RJ ;
Turner, BT ;
Jones, AD ;
O'Hare, M ;
Kammen, DM .
SCIENCE, 2006, 311 (5760) :506-508
[8]   A review of the production of ethanol from softwood [J].
Galbe, M ;
Zacchi, G .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (06) :618-628
[9]   Bioethanol [J].
Gray, KA ;
Zhao, LS ;
Emptage, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (02) :141-146
[10]  
GREER D, 2010, BIOCYCLE, V2, P27