Class Specific Centralized Dictionary Learning based Kernel Collaborative Representation for Fine-grained Image Classification

被引:0
|
作者
Feng, Xiaojie [1 ]
Wang, Yanjiang [1 ]
Liu, Bao-Di [1 ]
机构
[1] China Univ Petr East China, Coll Informat & Control Engn, Qingdao, Peoples R China
来源
PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016) | 2016年
基金
中国国家自然科学基金;
关键词
class specific dictionary learning; kernel method; collaborative representation; fine-grained image classification; SPARSE REPRESENTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Classification algorithms based sparse coding have formed a mature system for visual recognition. Recent studies suggest collaborative representation is a much more effective method for classification, compared with sparse representation, the objective function of collaborative representation is constrained by l(2)-norm. Traditional collaborative representation based classification always uses a set of training samples to construct a dictionary directly, which causes high residual error and thus reduces the correct rate of classification. To handle the problem, we propose an innovative method, which integrates centralized image coding and class specific dictionary learning algorithm with collaborative representation based classification together, namely class specific centralized dictionary learning based collaborative representation (CSCDL-CRC). Meanwhile, kernel method can obtain nonlinear information between data points through mapping feature space to kernel space, especially when it is applied to image classification. We extended our proposed CSCDL-CRC to the kernel space to improve the classification performance. We make plenty of experiments on three frequently-used fine-grained image datasets, including Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset, Oxford 102-Flowers dataset and Stanford Dogs dataset, to validate the effectiveness of the proposed approach.
引用
收藏
页码:1077 / 1082
页数:6
相关论文
共 50 条
  • [41] A Fine-Grained Image Classification Model Based on Hybrid Attention and Pyramidal Convolution
    Wang, Sifeng
    Li, Shengxiang
    Li, Anran
    Dong, Zhaoan
    Li, Guangshun
    Yan, Chao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (03): : 1283 - 1293
  • [42] PSBCNN : Fine-grained image classification based on pyramid convolution networks and SimAM
    Li, Shengxiang
    Wang, Sifeng
    Dong, Zhaoan
    Li, Anran
    Qi, Lianyong
    Yan, Chao
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 825 - 828
  • [43] Fine-Grained Image Classification Based on Multi-Scale Feature Fusion
    Li Siyao
    Liu Yuhong
    Zhang Rongfen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [44] Progressive learning for weakly supervised fine-grained classification
    Yan, Tiantian
    Wang, Shijie
    Wang, Zhihui
    Li, Haojie
    Luo, Zhongxuan
    SIGNAL PROCESSING, 2020, 171
  • [45] Bin similarity-based domain adaptation for fine-grained image classification
    Han, Tianyu
    Zhang, Lifeng
    Jia, Shixiang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (03) : 2319 - 2334
  • [46] Multi-Depth Learning with Multi-Attention for fine-grained image classification
    Dai, Zuhua
    Li, Hongyi
    Li, Kelong
    Zhou, Anwei
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 206 - 212
  • [47] Fine-Grained Image Classification with Object-Part Model
    Hong, Jinlong
    Huang, Kaizhu
    Liang, Hai-Ning
    Wang, Xinheng
    Zhang, Rui
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 233 - 243
  • [48] Bilinear Residual Attention Networks for Fine-Grained Image Classification
    Wang Yang
    Liu Libo
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [49] Random selection global diversification fine-grained image classification
    Liu G.-H.
    Zhan H.
    Meng Y.-B.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (09): : 2622 - 2631
  • [50] Multiple Kernel Collaborative Representation Based Classification
    Li, Ru
    Zhang, Qian
    Gao, Zhiming
    Liu, Bao-Di
    Wang, Yanjiang
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 826 - 831