On absolutely conformal mappings

被引:0
|
作者
Kalaj, David [1 ]
Mateljevic, Miodrag [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade 11000, Serbia
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2010年 / 77卷 / 1-2期
关键词
quasiregular mappings; Mobius transformations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R(n). It is proved that, if u is an element of C(1) (Omega; R(n)) and there holds the formula parallel to del u(x)parallel to(n) = n(n/2) vertical bar det del u(x)vertical bar in Omega, then for n >= 3 u is a restriction of a Mobius transformation, and for n = 2, u is an analytic function. This extends, partially, the well-known Lionville theorem ([6]), wich states that if u is an element of ACL(n)(Omega; R(n)), n >= 3, and the condition parallel to del u(x)parallel to(n) = n(n/2) det del u(x) is satisfied a.e. in Omega, then u is a restriction of a Mobius transformation.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [21] A problem of McMillan on conformal mappings
    O'Neill, MD
    Thurman, RE
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 197 (01) : 145 - 150
  • [22] 2 CONFORMAL-MAPPINGS
    DIXON, R
    LEONARDO, 1992, 25 (3-4) : 263 - &
  • [23] QUASILINES AND CONFORMAL-MAPPINGS
    FERNANDEZ, JL
    HEINONEN, J
    MARTIO, O
    JOURNAL D ANALYSE MATHEMATIQUE, 1989, 52 : 117 - 132
  • [24] Conformal mappings on the Grushin plane
    Walicki, Marcin
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [25] On Conformal Mappings of Spherical Domains
    Bourchtein, Andrei
    Bourchtein, Ludmila
    ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY, 2011, 1368
  • [26] On Conformal Mappings onto Quasidisks
    Ngin-Tee Koh
    Computational Methods and Function Theory, 2010, 10 : 215 - 221
  • [27] Conformal Mappings in Relativistic Astrophysics
    Hansraj, S.
    Govinder, K. S.
    Mewalal, N.
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [28] HILBERT SPACES AND CONFORMAL MAPPINGS
    ARONSZAJN, N
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (03) : 279 - 279
  • [29] On Conformal Mappings onto Quasidisks
    Koh, Ngin-Tee
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2010, 10 (01) : 215 - 221
  • [30] Geodesic Warps by Conformal Mappings
    Marsland, Stephen
    McLachlan, Robert I.
    Modin, Klas
    Perlmutter, Matthew
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 105 (02) : 144 - 154