On absolutely conformal mappings

被引:0
|
作者
Kalaj, David [1 ]
Mateljevic, Miodrag [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade 11000, Serbia
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2010年 / 77卷 / 1-2期
关键词
quasiregular mappings; Mobius transformations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R(n). It is proved that, if u is an element of C(1) (Omega; R(n)) and there holds the formula parallel to del u(x)parallel to(n) = n(n/2) vertical bar det del u(x)vertical bar in Omega, then for n >= 3 u is a restriction of a Mobius transformation, and for n = 2, u is an analytic function. This extends, partially, the well-known Lionville theorem ([6]), wich states that if u is an element of ACL(n)(Omega; R(n)), n >= 3, and the condition parallel to del u(x)parallel to(n) = n(n/2) det del u(x) is satisfied a.e. in Omega, then u is a restriction of a Mobius transformation.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条