Mixed-Integer Linear Programming Model by Linear Approximation for a Strike Package-to-Target Assignment Problem

被引:0
作者
Kim, Heungseob [1 ]
机构
[1] Changwon Natl Univ, Dept Smart Mfg Engn, Dept Ind & Syst Engn, Chang Won, South Korea
基金
新加坡国家研究基金会;
关键词
MISSILE DEFENSE; ALLOCATION; ALGORITHMS;
D O I
10.1155/2021/6631274
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study deals with an aircraft-to-target assignment (ATA) problem considering the modern air operation environment, such as the strike package concept, multiple targets for a sortie, and the strike packages' survivability. For the ATA problem, this study introduces a novel mathematical model in which a heterogeneous vehicle routing problem (HVRP) and a weapon-to-target assignment (WTA) problem are conceptually integrated. The HVRP generates the flight routes for strike packages because this study confirms that the survivability of a strike package depends on the path, and the WTA problem evaluates the likelihood of successful target destruction of assigned weapons. Although the first version of the model is developed as a mixed-integer nonlinear programming (MINLP) model, this study attempts to convert it to a mixed-integer linear programming (MILP) model using the logarithmic transformation and piecewise linear approximation methods. For an ATA problem, this activity could provide an opportunity to use the excellent existing algorithms for searching the optimal solution of LP models. To maximize the operational effectiveness, the MILP model simultaneously determines the following for each strike package: (a) composition type, (b) targets, (c) flight route, (d) types, and (e) quantity of weapons for each target.
引用
收藏
页数:12
相关论文
共 41 条
[1]  
Ahner D, 2013, WINT SIMUL C PROC, P2831, DOI 10.1109/WSC.2013.6721653
[2]   Exact and heuristic algorithms for the weapon-target assignment problem [J].
Ahuja, Ravindra K. ;
Kumar, Arvind ;
Jha, Krishna C. ;
Orlin, James B. .
OPERATIONS RESEARCH, 2007, 55 (06) :1136-1146
[3]  
Castro D.R., 2002, OPTIMIZATION MODELS
[4]  
Chang S.C., 1987, DEC CONTR 1987 26 IE, V26, P1678
[5]   Approximate dynamic programming for missile defense interceptor fire control [J].
Davis, Michael T. ;
Robbins, Matthew J. ;
Lunday, Brian J. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 259 (03) :873-886
[6]  
De-lin L., 2006, APPL SOFT COMPUTING, V27, P1166
[7]  
Griggs B.J., 1994, THESIS AIR FORCE I T
[8]   An air mission planning algorithm using decision analysis and mixed integer programming [J].
Griggs, BJ ;
Parnell, GS ;
Lehmkuhl, LJ .
OPERATIONS RESEARCH, 1997, 45 (05) :662-676
[9]  
Hu X., 2018, MATH PROBL ENG, V2
[10]  
Jeong B.J., 1994, MILITARY OPERATIONS, V20, P49