Light-Controllable Digital Coding Metasurfaces

被引:160
作者
Zhang, Xin Ge [1 ]
Tang, Wen Xuan [1 ]
Jiang, Wei Xiang [1 ]
Bai, Guo Dong [1 ]
Tang, Jian [1 ]
Bai, Lin [1 ]
Qiu, Cheng-Wei [2 ]
Cui, Tie Jun [1 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119620, Singapore
基金
美国国家科学基金会;
关键词
far-field radiation pattern; light-controlled digital coding metasurfaces; real-time control of electromagnetic waves; METAMATERIAL; REFLECTION; PHASE;
D O I
10.1002/advs.201801028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since the advent of digital coding metamaterials, a new paradigm is unfolded to sample, compute and program electromagnetic waves in real time with one physical configuration. However, one inconvenient truth is that actively tunable building blocks such as diodes, varactors, and biased lines must be individually controlled by a computer-assisted field programmable gate array and physically connected by electrical wires to the power suppliers. This issue becomes more formidable when more elements are needed for more advanced and multitasked metadevices and metasystems. Here, a remote-mode metasurface is proposed and realized that is addressed and tuned by illuminating light. By tuning the intensity of light-emitting diode light, a digital coding metasurface composed of such light-addressable elements enables dynamically reconfigurable radiation beams in a control-circuitry-free way. Experimental demonstration is validated at microwave frequencies. The proposed dynamical remote-tuning metasurface paves a way for constructing unprecedented digital metasurfaces in a noncontact remote fashion.
引用
收藏
页数:7
相关论文
共 49 条
[1]   A review of metasurfaces: physics and applications [J].
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Yu, Nanfang .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)
[2]   A Reconfigurable Active Huygens' Metalens [J].
Chen, Ke ;
Feng, Yijun ;
Monticone, Francesco ;
Zhao, Junming ;
Zhu, Bo ;
Jiang, Tian ;
Zhang, Lei ;
Kim, Yongjune ;
Ding, Xumin ;
Zhang, Shuang ;
Alu, Andrea ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2017, 29 (17)
[3]   Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms [J].
Cong, Longqing ;
Pitchappa, Prakash ;
Wu, Yang ;
Ke, Lin ;
Lee, Chengkuo ;
Singh, Navab ;
Yang, Hyunsoo ;
Singh, Ranjan .
ADVANCED OPTICAL MATERIALS, 2017, 5 (02)
[4]   Information metamaterials and metasurfaces [J].
Cui, Tie Jun ;
Liu, Shuo ;
Zhang, Lei .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (15) :3644-3668
[5]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[6]   Information entropy of coding metasurface [J].
Cui, Tie-Jun ;
Liu, Shuo ;
Li, Lian-Lin .
LIGHT-SCIENCE & APPLICATIONS, 2016, 5 :e16172-e16172
[7]  
Cui TJ, 2010, METAMATERIALS: THEORY, DESIGN, AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-0573-4
[8]  
Della Giovampaola C, 2014, NAT MATER, V13, P1115, DOI [10.1038/NMAT4082, 10.1038/nmat4082]
[9]   Babinet principle applied to the design of metasurfaces and metamaterials -: art. no. 197401 [J].
Falcone, F ;
Lopetegi, T ;
Laso, MAG ;
Baena, JD ;
Bonache, J ;
Beruete, M ;
Marqués, R ;
Martín, F ;
Sorolla, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :197401-1
[10]   Sub-diffraction-limited optical imaging with a silver superlens [J].
Fang, N ;
Lee, H ;
Sun, C ;
Zhang, X .
SCIENCE, 2005, 308 (5721) :534-537