共 29 条
Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities
被引:27
作者:
Bogaerts, Louisa
[1
,2
]
Siegelman, Noam
[3
]
Frost, Ram
[3
,4
,5
]
机构:
[1] CNRS, Marseille, France
[2] Aix Marseille Univ, Marseille, France
[3] Hebrew Univ Jerusalem, Jerusalem, Israel
[4] Haskins Labs Inc, New Haven, CT USA
[5] Basque Ctr Cognit Brain & Language, San Sebastian, Spain
基金:
以色列科学基金会;
关键词:
Visual statistical learning;
Sequence learning;
Individual differences;
MEMORIES;
ADJACENT;
CHILDREN;
ABILITY;
TASK;
D O I:
10.3758/s13423-015-0996-z
中图分类号:
B841 [心理学研究方法];
学科分类号:
040201 ;
摘要:
What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed.
引用
收藏
页码:1250 / 1256
页数:7
相关论文