Fast discharge and high energy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3 nanofibers

被引:100
作者
Pan, Z. B. [1 ]
Yao, L. M. [2 ]
Zhai, J. W. [1 ]
Liu, S. H. [1 ]
Yang, K. [1 ]
Wang, H. T. [1 ]
Liu, J. H. [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Funct Mat Res Lab, Key Lab Adv Civil Engn Mat,Minist Educ, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Univ Macau, Fac Sci & Technol, Inst Appl Phys & Mat Engn, Taipa 999078, Macao Sar, Peoples R China
关键词
Ba0.6Sr0.4TiO3; nanofibers; Poly(vinylidene fluoride); Nanocomposites; Energy density; Capacitor; HIGH DIELECTRIC-CONSTANT; POLY(VINYLIDENE FLUORIDE) NANOCOMPOSITES; COMPOSITE FLEXIBLE FILMS; STORAGE DENSITY; POLYMER NANOCOMPOSITES; BREAKDOWN STRENGTH; BATIO3; NANOPARTICLES; HIGH-PERMITTIVITY; NANOWIRES; FABRICATION;
D O I
10.1016/j.ceramint.2016.06.090
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanocomposites combining high breakdown strength (BDS) polymer and high dielectric permittivity ceramic fillers have shown great potential for pulsed power application. Here a new composite material based on surface-functionalized Ba0.6Sr0.4TiO3 nanofibers/poly(vinylidene fluoride) (BST NF/PVDF) has been prepared by solution casting. The nanocomposites containing 2.5 vol% isopropyl dioleic(dioctyl-phosphate) titanate (NDZ 101)-functionalized BST NF (N-h-BST NF) have large energy density of 6.95 J cm(-3) at 380 MV m(-1), which is 1.85 times larger than that of the pure PVDF at the same electric field. Also, the discharge speed of the nanocomposites containing 7.5 vol% N-h-BST NF is approximately 0.11 The good properties, together with the large energy density and fast discharge speed, make this material a promising candidate for pulsed power capacitor. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:14667 / 14674
页数:8
相关论文
共 50 条
[1]   Dielectric properties of PI hybrid film doped by CaCu3Ti3.95Zr0.05O12 ceramics with different particle sizes [J].
Chi, Q. G. ;
Zhang, C. H. ;
Wang, X. ;
Sun, J. ;
Gao, L. ;
Wang, X. ;
Lei, Q. Q. .
CERAMICS INTERNATIONAL, 2014, 40 (09) :15045-15049
[2]   Preparation, characterization and dielectric properties of polyetherimide nanocomposites containing surface-functionalized BaTiO3 nanoparticles [J].
Choudhury, Arup .
POLYMER INTERNATIONAL, 2012, 61 (05) :696-702
[3]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[4]   Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite [J].
Dang, Zhi-Min ;
Xu, Hai-Ping ;
Wang, Hai-Yan .
APPLIED PHYSICS LETTERS, 2007, 90 (01)
[5]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365
[6]   Fundamentals, processes and applications of high-permittivity polymer matrix composites [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Zha, Jun-Wei ;
Zhou, Tao ;
Li, Sheng-Tao ;
Hu, Guo-Hua .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (04) :660-723
[7]   Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites [J].
Dang, ZM ;
Wang, L ;
Wang, HY ;
Nan, CW ;
Xie, D ;
Yin, Y ;
Tjong, SC .
APPLIED PHYSICS LETTERS, 2005, 86 (17) :1-3
[8]   Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO3 Particles Derived by Molten Salt Method [J].
Fu, Jing ;
Hou, Yudong ;
Zheng, Mupeng ;
Wei, Qiaoyi ;
Zhu, Mankang ;
Yan, Hui .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (44) :24480-24491
[9]   Dielectric response of polymer relaxors [J].
Hilczer, B ;
Smogór, H ;
Goslar, J .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (01) :117-127
[10]   Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density [J].
Hu, Penghao ;
Shen, Yang ;
Guan, Yuhan ;
Zhang, Xuehui ;
Lin, Yuanhua ;
Zhang, Qiming ;
Nan, Ce-Wen .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (21) :3172-3178