Monte Carlo modeling of spray agglomeration in a cylindrical fluidized bed: From batch-wise to continuous processes

被引:11
|
作者
Du, J. [1 ]
Strenzke, G. [1 ]
Bueck, A. [2 ]
Tsotsas, E. [1 ]
机构
[1] Otto von Guericke Univ, Thermal Proc Engn, Magdeburg, Germany
[2] Friedrich Alexander Univ, Inst Particle Technol, Erlangen, Germany
关键词
Fluidized bed; Spray agglomeration; Continuous process; Monte Carlo modeling; GRANULATION; SIMULATION; NANOPARTICLE; PARAMETERS; VARIABLES; DYNAMICS; KINETICS; GROWTH;
D O I
10.1016/j.powtec.2021.10.051
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Monte Carlo method is a stochastic approach that can simulate different micro-mechanisms occurring in spray fluidized bed (SFB) agglomeration. As no model covered the simulation of continuous SFB agglomeration process existing before, an event-driven constant volume Monte Carlo model is proposed. By adding particle feed and discharge events that take place periodically, the Monte Carlo model is extended to simulate continuous SFB agglomeration process. In these events, new particles are fed, and individuals are randomly selected and removed according to the feed rate and the change in bed mass. The experimental results show that the decrease of feed rate or bed mass increases the particle size. The comparison of experimental and simulation results shows that the continuous Monte Carlo model can predict the evolution of the particle size distribution with collision frequency prefactor 0.05 and breakage probability 0.17%. The development of bed mass in experiments can be reproduced in the simulations. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 40 条
  • [1] Modeling of Aggregation Kernel Using Monte Carlo Simulations of Spray Fluidized Bed Agglomeration
    Hussain, Mubashir
    Peglow, Mirko
    Tsotsas, Evangelos
    Kumar, Jitendra
    AICHE JOURNAL, 2014, 60 (03) : 855 - 868
  • [2] A tunable aggregation model incorporated in Monte Carlo simulations of spray fluidized bed agglomeration
    Singh, Abhinandan Kumar
    Tsotsas, Evangelos
    POWDER TECHNOLOGY, 2020, 364 : 417 - 428
  • [3] Monte Carlo modeling of binder-Less spray agglomeration in fluidized beds
    Rieck, Christian
    Schmidt, Martin
    Bueck, Andreas
    Tsotsas, Evangelos
    AICHE JOURNAL, 2018, 64 (10) : 3582 - 3594
  • [4] A novel, structure-tracking monte carlo algorithm for spray fluidized bed agglomeration
    Dernedde, Mathias
    Peglow, Mirko
    Tsotsas, Evangelos
    AICHE JOURNAL, 2012, 58 (10) : 3016 - 3029
  • [5] Monte Carlo Modeling of Fluidized Bed Coating and Layering Processes
    Rieck, Christian
    Bueck, Andreas
    Tsotsas, Evangelos
    AICHE JOURNAL, 2016, 62 (08) : 2670 - 2680
  • [6] Parameter Identification For Continuous Fluidized Bed Spray Agglomeration
    Golovin, Ievgen
    Strenzke, Gerd
    Duerr, Robert
    Palis, Stefan
    Bueck, Andreas
    Tsotsas, Evangelos
    Kienle, Achim
    PROCESSES, 2018, 6 (12)
  • [7] Monte Carlo modeling of particle agglomeration during polymer pyrolysis in bubbling fluidized bed
    Chen, Kaicheng
    Li, Zhongyi
    Akbas, Serap
    Tsotsas, Evangelos
    FUEL, 2024, 367
  • [8] Lyapunov-based online parameter estimation in continuous fluidized bed spray agglomeration processes
    Golovin, Ievgen
    Otto, Eric
    Duerr, Robert
    Palis, Stefan
    Kienle, Achim
    IFAC PAPERSONLINE, 2019, 52 (01): : 329 - 334
  • [9] Kernel identification in continuous fluidized bed spray agglomeration from steady state data
    Otto, Eric
    Duerr, Robert
    Strenzke, Gerd
    Palis, Stefan
    Bueck, Andreas
    Tsotsas, Evangelos
    Kienle, Achim
    ADVANCED POWDER TECHNOLOGY, 2021, 32 (07) : 2517 - 2529
  • [10] Modeling spray fluidized bed aggregation kinetics on the basis of Monte-Carlo simulation results
    Hussain, Mubashir
    Kumar, Jitendra
    Peglow, Mirko
    Tsotsas, Evangelos
    CHEMICAL ENGINEERING SCIENCE, 2013, 101 : 35 - 45