Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice

被引:6
|
作者
Cai, Xiaqiang [1 ,2 ,3 ,4 ]
Liu, Zenghui [5 ]
Dong, Xu [1 ,2 ,3 ,4 ]
Wang, Ying [1 ,2 ,3 ,4 ]
Zhu, Luwei [1 ,2 ,3 ,4 ]
Li, Mengli [1 ,2 ,3 ,4 ]
Xu, Yan [1 ,2 ,3 ,4 ]
机构
[1] Anhui Agr Univ, State Key Lab Tea Plant Biol & Utilizat, Hefei, Peoples R China
[2] Anhui Agr Univ, Key Lab Tea Biol & Tea Proc, Minist Agr, Hefei, Peoples R China
[3] Anhui Agr Univ, Anhui Prov Lab Tea Plant Biol & Utilizat, Hefei, Peoples R China
[4] Minist Educ, Int Joint Lab Tea Chem & Hlth Effects, Hefei, Peoples R China
[5] Anhui Acad Med Sci, Hefei 230061, Peoples R China
关键词
BLACK TEA POLYPHENOLS; CAMELLIA-SINENSIS; BODY-COMPOSITION; GREEN TEA; ACCUMULATION; ANTIOBESITY; METABOLISM; MECHANISMS; AMPK;
D O I
10.1039/d1fo01966j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Theaflavins (TFs) are the characteristic components of black tea and have been widely acknowledged for their health benefits. The current study aimed to investigate the effects and mechanism of TFs, TF1, TF2a and TF3 on glycolipid metabolism in obese mice induced by a high-fat diet (HFD). Mice were randomly divided into seven groups (n = 8 per group) as follows: low-fat diet (LFD), HFD, HFD + metformin (Met, 100 mg kg(-1) d(-1)), HFD + TFs (TFs, 200 mg kg(-1) d(-1)), HFD + TF1 (TF1, 100 mg kg(-1) d(-1)), HFD + TF2a (TF2a, 100 mg kg(-1) d(-1)), and HFD + TF3 (TF3, 100 mg kg(-1) d(-1)). All groups were studied for 9 weeks continuously. The levels of serum glucose, insulin, TC, TG, LDL and HLD in the plasma, lipid accumulation in the liver, and injury of the liver were investigated. In addition, the effects of TFs and their monomers on the SIRT6/AMPK/SREBP-1/FASN pathway were also evaluated. The results showed that oral administration of TFs, TF1, TF2a and TF3 not only dramatically suppressed weight gain, reduced blood glucose level, and ameliorated insulin resistance but also obviously lowered the levels of serum TC, TG and LDL, suppressed the activities of ALT and AST, and ameliorated hepatic damage in mice fed a HFD when compared to the HFD group. Western blot analysis showed that TFs, TF1, TF2a and TF3 treatments increased the expression of SIRT6 and suppressed the expression levels of SREBP-1 and FASN significantly in mice fed a HFD as compared to the HFD group. The phosphorylation of AMPK in mice fed a HFD was obviously elevated by TF2a and TF3 when compared to the HFD group. These results proved for the first time that TF1, TF2a and TF3 improved the glucolipid metabolism of mice fed a HFD, and activated the SIRT6/AMPK/SREBP-1/FASN signaling pathway to inhibit the synthesis and accumulation of lipids in the liver to ameliorate obesity in mice fed a HFD. These findings indicate that TFs, TF1, TF2a and TF3 as the main functional components of black tea might potentially be used as a food additive for improving glycolipid metabolism and ameliorating obesity, and TF3 may be the best choice.
引用
收藏
页码:9922 / 9931
页数:10
相关论文
共 50 条
  • [1] Antiobesity and Lipid Lowering Effects of Orthosiphon stamineus in High-Fat Diet-Induced Obese Mice
    Seyedan, Atefehalsadat
    Alshawsh, Mohammed Abdullah
    Alshagga, Mustafa Ahmed
    Mohamed, Zahurin
    PLANTA MEDICA, 2017, 83 (08) : 684 - 692
  • [2] Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats
    Jin, Duiyan
    Xu, Yi
    Mei, Xin
    Meng, Qing
    Gao, Ying
    Li, Bo
    Tu, Youying
    JOURNAL OF FUNCTIONAL FOODS, 2013, 5 (03) : 1142 - 1150
  • [3] Effects of Brassica oleracea extract on impaired glucose and lipid homeostasis in high-fat diet-induced obese mice
    Nanna, Urarat
    Naowaboot, Jarinyaporn
    Chularojmontri, Linda
    Tingpej, Pholawat
    Wattanapitayakul, Suvara
    ASIAN PACIFIC JOURNAL OF TROPICAL BIOMEDICINE, 2019, 9 (02) : 80 - 84
  • [4] Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice
    Naowaboot, Jarinyaporn
    Piyabhan, Pritsana
    Munkong, Narongsuk
    Parklak, Wason
    Pannangpetch, Patchareewan
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2016, 43 (02): : 242 - 250
  • [5] Beneficial Metabolic Effects of Mirabegron In Vitro and in High-Fat Diet-Induced Obese Mice
    Hao, Lei
    Scott, Sheyenne
    Abbasi, Mehrnaz
    Zu, Yujiao
    Khan, Md Shahjalal Hossain
    Yang, Yang
    Wu, Dayong
    Zhao, Ling
    Wang, Shu
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2019, 369 (03) : 419 - 427
  • [6] Hypoglycemic effects of brassinosteroid in diet-induced obese mice
    Esposito, Debora
    Kizelsztein, Pablo
    Komarnytsky, Slavko
    Raskin, Ilya
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2012, 303 (05): : E652 - E658
  • [7] Effects of Collagen Peptide Administration on Visceral Fat Content in High-Fat Diet-Induced Obese Mice
    Watanabe, Ran
    Yamaguchi, Mana
    Watanabe, Kyosuke
    Shimizu, Muneshige
    Takahashi, Azusa
    Sone, Hideyuki
    Kamiyama, Shin
    JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, 2021, 67 (01) : 57 - 62
  • [8] Ganoderma lucidum Extract Reduces Insulin Resistance by Enhancing AMPK Activation in High-Fat Diet-Induced Obese Mice
    Lee, Hyeon A.
    Cho, Jae-Han
    Afinanisa, Qonita
    An, Gi-Hong
    Han, Jae-Gu
    Kang, Hyo Jeung
    Choi, Seong Ho
    Seong, Hyun-A
    NUTRIENTS, 2020, 12 (11) : 1 - 21
  • [9] Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice
    Jin, Heegu
    Lee, Kippeum
    Chei, Sungwoo
    Oh, Hyun-Ji
    Lee, Kang-Pyo
    Lee, Boo-Yong
    CELLS, 2020, 9 (04)
  • [10] Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice
    Lee, Young-Sil
    Cha, Byung-Yoon
    Yamaguchi, Kohji
    Choi, Sun-Sil
    Yonezawa, Takayuki
    Teruya, Toshiaki
    Nagai, Kazuo
    Woo, Je-Tae
    CYTOTECHNOLOGY, 2010, 62 (04) : 367 - 376