Classification of anti-symmetric solutions to nonlinear fractional Laplace equations

被引:13
作者
Zhuo, Ran [1 ,2 ]
Li, Congming [2 ,3 ]
机构
[1] Huanghuai Univ, Dept Math & Stat, Zhumadian, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
关键词
SEMILINEAR ELLIPTIC-EQUATIONS; LIOUVILLE TYPE THEOREMS; NONEXISTENCE; REGULARITY; DIFFUSION;
D O I
10.1007/s00526-021-02128-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study anti-symmetric solutions to nonlinear equations (-Delta)(s)u = u(p) involving fractional Laplacian operators of order 2s. First, in the often used defining space L-2s, we establish a Liouvill type theorem. Some suitable forms of maximum principles and some subtle lower bounds of the solutions are the key ingredients here. Second, observing the anti-symmetric property of the solutions, we extend the usual defining space L2s for (-Delta)(s) to L2s+1. It is very interesting to see the existence of solutions in the expanded and somewhat more natural space. In fact, we show the existence of non-trivial solutions when p + 2s < 1 and the nonexistence when p + 2s > 1. Finding a suitable super-solution is an important step in constructing non-trivial solutions.
引用
收藏
页数:23
相关论文
共 34 条
[1]  
[Anonymous], 1996, Cambridge Tracts in Mathematics
[2]  
[Anonymous], 1981, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud
[3]  
[Anonymous], 1991, Bol. Soc. Brasil. Mat. (N.S.), DOI DOI 10.1007/BF01244896
[4]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[5]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[6]  
2-6
[7]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[10]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093