Tissue engineering for heart valves and vascular grafts

被引:5
|
作者
Teebken, OE [1 ]
Wilhelmi, M [1 ]
Haverich, A [1 ]
机构
[1] Hannover Med Sch, Klin Thorax Herz & Gefasschirurg OE 6210, D-30625 Hannover, Germany
来源
CHIRURG | 2005年 / 76卷 / 05期
关键词
D O I
10.1007/s00104-005-1032-z
中图分类号
R61 [外科手术学];
学科分类号
摘要
Current prosthetic substitutes for heart valves and blood vessels have numerous limitations such as limited durability (biological valves), susceptibility to infection, the necessity of lifelong anticoagulation therapy (prosthetic valves), and reduced patency in small-caliber grafts, for example. Tissue engineering using either polymers or decellularised native allogeneic or xenogenic heart valve/vascular matrices may provide the techniques to develop the ideal heart valve or vascular graft. The matrix scaffold serves as a basis on which seeded cells can organise and develop into the valve or vascular tissue prior to or following implantation. The scaffold is either degraded or metabolised during the formation and organisation of the newly generated matrix, leading to vital living tissue, This paper summarises current research and first clinical developments in the tissue engineering of heart valves and vascular grafts.
引用
收藏
页码:453 / +
页数:13
相关论文
共 50 条
  • [41] Orthotopic Replacement of Aortic Heart Valves with Tissue-Engineered Grafts
    Tudorache, Igor
    Calistru, Alex
    Baraki, Hassina
    Meyer, Tanja
    Hoeffler, Klaus
    Sarikouch, Samir
    Bara, Christopher
    Goerer, Adelheid
    Hartung, Dagmar
    Hilfiker, Andres
    Haverich, Axel
    Cebotari, Serghei
    TISSUE ENGINEERING PART A, 2013, 19 (15-16) : 1686 - 1694
  • [42] ENGINEERING HEART TISSUE GRAFTS IMPROVE ELECTRICAL CHARACTERISTICS
    Zhang Ling
    Sun Juan
    Hou Yuemei
    HEART, 2011, 97
  • [43] CELL SEEDING AND SCAFFOLD OPTIMISATION FOR TISSUE ENGINEERING VASCULAR GRAFTS
    Shaikh, F. M.
    Callanan, A.
    Kavanagh, E. G.
    Burke, P. E.
    Grace, P. A.
    McGloughlin, T. M.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2007, 176 : S14 - S14
  • [44] Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering
    Chen, Jun
    Zhang, Di
    Wu, Lin-Ping
    Zhao, Ming
    POLYMERS, 2023, 15 (09)
  • [45] Bioengineered vascular grafts: improving vascular tissue engineering through scaffold design
    McClure, M. J.
    Wolfe, P. S.
    Rodriguez, I. A.
    Bowlin, G. L.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2011, 21 (03) : 211 - 227
  • [46] Tissue engineering of recellularized small-diameter vascular grafts
    Borschel, GH
    Huang, YC
    Calve, S
    Arruda, EM
    Lynch, JB
    Dow, DE
    Kuzon, WM
    Dennis, RG
    Brown, DL
    TISSUE ENGINEERING, 2005, 11 (5-6): : 778 - 786
  • [47] Fibrin gel scaffold optimization for tissue engineering vascular grafts
    Shaikh, F. M.
    Brien, T. P. O.
    Callanan, A.
    Kavanagh, E. G.
    Burke, P. E.
    Grace, P. A.
    Badylak, S. F.
    McGloughlin, T. M.
    TISSUE ENGINEERING, 2007, 13 (07): : 1696 - 1697
  • [48] In vivo tissue engineering of heart valves: evolution of a novel concept
    Schleicher, Martina
    Wendel, Hans Peter
    Fritze, Olaf
    Stock, Ulrich A.
    REGENERATIVE MEDICINE, 2009, 4 (04) : 613 - 619
  • [49] Integrating principles of developmental biology in tissue engineering of heart valves
    Sales, Virna L.
    Mayer, John E., Jr.
    FUTURE CARDIOLOGY, 2008, 4 (01) : 1 - 4
  • [50] Biomaterial-based In Situ Tissue Engineering of Heart Valves
    Bouten, C. V.
    Smits, A. I.
    Talacua, H.
    Muylaert, D. E.
    Janssen, H. M.
    Bosman, A.
    Verhaar, M. C.
    Dankers, P. Y.
    Driessen, A.
    Kluin, J.
    Baaijens, F. P.
    TISSUE ENGINEERING PART A, 2015, 21 : S6 - S6