Analysis of Thioester-Containing Proteins during the Innate Immune Response of Drosophila melanogaster

被引:81
作者
Aoun, Richard Bou [1 ]
Hetru, Charles [1 ]
Troxler, Laurent [1 ]
Doucet, Daniel [1 ]
Ferrandon, Dominique [1 ]
Matt, Nicolas [1 ]
机构
[1] Univ Strasbourg, CNRS, Inst Biol Mol & Cellulaire, Unite Propre Rech 9022, FR-67084 Strasbourg, France
基金
美国国家卫生研究院;
关键词
Drosophila melanogaster; Gene disruption; Genome evolution; Genomic sequence analysis; In situ hybridization; Innate immunity; Insects; Invertebrates; Thioester-containing proteins; COMPLEMENT-LIKE PROTEIN; ANTIMICROBIAL PEPTIDE GENES; HOST-DEFENSE; ANOPHELES-GAMBIAE; TOLL PATHWAY; SP-NOV; INFECTION; EXPRESSION; ALIGNMENT; REVEALS;
D O I
10.1159/000321554
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1-Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila. Copyright (C) 2010 S. Karger AG, Basel
引用
收藏
页码:52 / 64
页数:13
相关论文
共 36 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes [J].
Bellen, HJ ;
Levis, RW ;
Liao, GC ;
He, YC ;
Carlson, JW ;
Tsang, G ;
Evans-Holm, M ;
Hiesinger, PR ;
Schulze, KL ;
Rubin, GM ;
Hoskins, RA ;
Spradling, AC .
GENETICS, 2004, 167 (02) :761-781
[3]   Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae [J].
Blandin, S ;
Shiao, SH ;
Moita, LF ;
Janse, CJ ;
Waters, AP ;
Kafatos, FC ;
Levashina, EA .
CELL, 2004, 116 (05) :661-670
[4]   Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response [J].
Charroux, Bernard ;
Royet, Julien .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (24) :9797-9802
[5]   Evolution of genes and genomes on the Drosophila phylogeny [J].
Clark, Andrew G. ;
Eisen, Michael B. ;
Smith, Douglas R. ;
Bergman, Casey M. ;
Oliver, Brian ;
Markow, Therese A. ;
Kaufman, Thomas C. ;
Kellis, Manolis ;
Gelbart, William ;
Iyer, Venky N. ;
Pollard, Daniel A. ;
Sackton, Timothy B. ;
Larracuente, Amanda M. ;
Singh, Nadia D. ;
Abad, Jose P. ;
Abt, Dawn N. ;
Adryan, Boris ;
Aguade, Montserrat ;
Akashi, Hiroshi ;
Anderson, Wyatt W. ;
Aquadro, Charles F. ;
Ardell, David H. ;
Arguello, Roman ;
Artieri, Carlo G. ;
Barbash, Daniel A. ;
Barker, Daniel ;
Barsanti, Paolo ;
Batterham, Phil ;
Batzoglou, Serafim ;
Begun, Dave ;
Bhutkar, Arjun ;
Blanco, Enrico ;
Bosak, Stephanie A. ;
Bradley, Robert K. ;
Brand, Adrianne D. ;
Brent, Michael R. ;
Brooks, Angela N. ;
Brown, Randall H. ;
Butlin, Roger K. ;
Caggese, Corrado ;
Calvi, Brian R. ;
de Carvalho, A. Bernardo ;
Caspi, Anat ;
Castrezana, Sergio ;
Celniker, Susan E. ;
Chang, Jean L. ;
Chapple, Charles ;
Chatterji, Sourav ;
Chinwalla, Asif ;
Civetta, Alberto .
NATURE, 2007, 450 (7167) :203-218
[6]   Genetic Ablation of Drosophila Phagocytes Reveals Their Contribution to Both Development and Resistance to Bacterial Infection [J].
Defaye, Arnaud ;
Evans, Iwan ;
Crozatier, Michele ;
Wood, Will ;
Lemaitre, Bruno ;
Leulier, Francois .
JOURNAL OF INNATE IMMUNITY, 2009, 1 (04) :322-334
[7]   Phylogeny.fr: robust phylogenetic analysis for the non-specialist [J].
Dereeper, A. ;
Guignon, V. ;
Blanc, G. ;
Audic, S. ;
Buffet, S. ;
Chevenet, F. ;
Dufayard, J. -F. ;
Guindon, S. ;
Lefort, V. ;
Lescot, M. ;
Claverie, J. -M. ;
Gascuel, O. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W465-W469
[8]   Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila [J].
Dionne, Marc S. ;
Pham, Linh N. ;
Shirasu-Hiza, Mimi ;
Schneider, David S. .
CURRENT BIOLOGY, 2006, 16 (20) :1977-1985
[9]   Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum [J].
Dionne, MS ;
Ghori, N ;
Schneider, DS .
INFECTION AND IMMUNITY, 2003, 71 (06) :3540-3550
[10]   A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment [J].
Dupé, V ;
Matt, N ;
Garnier, JM ;
Chambon, P ;
Mark, M ;
Ghyselinck, NB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (24) :14036-14041