Analysis of Thioester-Containing Proteins during the Innate Immune Response of Drosophila melanogaster

被引:78
作者
Aoun, Richard Bou [1 ]
Hetru, Charles [1 ]
Troxler, Laurent [1 ]
Doucet, Daniel [1 ]
Ferrandon, Dominique [1 ]
Matt, Nicolas [1 ]
机构
[1] Univ Strasbourg, CNRS, Inst Biol Mol & Cellulaire, Unite Propre Rech 9022, FR-67084 Strasbourg, France
基金
美国国家卫生研究院;
关键词
Drosophila melanogaster; Gene disruption; Genome evolution; Genomic sequence analysis; In situ hybridization; Innate immunity; Insects; Invertebrates; Thioester-containing proteins; COMPLEMENT-LIKE PROTEIN; ANTIMICROBIAL PEPTIDE GENES; HOST-DEFENSE; ANOPHELES-GAMBIAE; TOLL PATHWAY; SP-NOV; INFECTION; EXPRESSION; ALIGNMENT; REVEALS;
D O I
10.1159/000321554
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1-Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila. Copyright (C) 2010 S. Karger AG, Basel
引用
收藏
页码:52 / 64
页数:13
相关论文
共 36 条
  • [1] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [2] The BDGP gene disruption project: Single transposon insertions associated with 40% of Drosophila genes
    Bellen, HJ
    Levis, RW
    Liao, GC
    He, YC
    Carlson, JW
    Tsang, G
    Evans-Holm, M
    Hiesinger, PR
    Schulze, KL
    Rubin, GM
    Hoskins, RA
    Spradling, AC
    [J]. GENETICS, 2004, 167 (02) : 761 - 781
  • [3] Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae
    Blandin, S
    Shiao, SH
    Moita, LF
    Janse, CJ
    Waters, AP
    Kafatos, FC
    Levashina, EA
    [J]. CELL, 2004, 116 (05) : 661 - 670
  • [4] Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response
    Charroux, Bernard
    Royet, Julien
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (24) : 9797 - 9802
  • [5] Evolution of genes and genomes on the Drosophila phylogeny
    Clark, Andrew G.
    Eisen, Michael B.
    Smith, Douglas R.
    Bergman, Casey M.
    Oliver, Brian
    Markow, Therese A.
    Kaufman, Thomas C.
    Kellis, Manolis
    Gelbart, William
    Iyer, Venky N.
    Pollard, Daniel A.
    Sackton, Timothy B.
    Larracuente, Amanda M.
    Singh, Nadia D.
    Abad, Jose P.
    Abt, Dawn N.
    Adryan, Boris
    Aguade, Montserrat
    Akashi, Hiroshi
    Anderson, Wyatt W.
    Aquadro, Charles F.
    Ardell, David H.
    Arguello, Roman
    Artieri, Carlo G.
    Barbash, Daniel A.
    Barker, Daniel
    Barsanti, Paolo
    Batterham, Phil
    Batzoglou, Serafim
    Begun, Dave
    Bhutkar, Arjun
    Blanco, Enrico
    Bosak, Stephanie A.
    Bradley, Robert K.
    Brand, Adrianne D.
    Brent, Michael R.
    Brooks, Angela N.
    Brown, Randall H.
    Butlin, Roger K.
    Caggese, Corrado
    Calvi, Brian R.
    de Carvalho, A. Bernardo
    Caspi, Anat
    Castrezana, Sergio
    Celniker, Susan E.
    Chang, Jean L.
    Chapple, Charles
    Chatterji, Sourav
    Chinwalla, Asif
    Civetta, Alberto
    [J]. NATURE, 2007, 450 (7167) : 203 - 218
  • [6] Genetic Ablation of Drosophila Phagocytes Reveals Their Contribution to Both Development and Resistance to Bacterial Infection
    Defaye, Arnaud
    Evans, Iwan
    Crozatier, Michele
    Wood, Will
    Lemaitre, Bruno
    Leulier, Francois
    [J]. JOURNAL OF INNATE IMMUNITY, 2009, 1 (04) : 322 - 334
  • [7] Phylogeny.fr: robust phylogenetic analysis for the non-specialist
    Dereeper, A.
    Guignon, V.
    Blanc, G.
    Audic, S.
    Buffet, S.
    Chevenet, F.
    Dufayard, J. -F.
    Guindon, S.
    Lefort, V.
    Lescot, M.
    Claverie, J. -M.
    Gascuel, O.
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : W465 - W469
  • [8] Akt and foxo dysregulation contribute to infection-induced wasting in Drosophila
    Dionne, Marc S.
    Pham, Linh N.
    Shirasu-Hiza, Mimi
    Schneider, David S.
    [J]. CURRENT BIOLOGY, 2006, 16 (20) : 1977 - 1985
  • [9] Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum
    Dionne, MS
    Ghori, N
    Schneider, DS
    [J]. INFECTION AND IMMUNITY, 2003, 71 (06) : 3540 - 3550
  • [10] A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment
    Dupé, V
    Matt, N
    Garnier, JM
    Chambon, P
    Mark, M
    Ghyselinck, NB
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (24) : 14036 - 14041