Fault-Free Hamiltonian Cycles Passing through Prescribed Edges in k-Ary n-Cubes with Faulty Edges

被引:15
作者
Zhang, Shurong [1 ]
Zhang, Xianwen [2 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
关键词
Interconnection networks; k-ary n-cubes; fault tolerance; hamiltonian cycles; prescribed edges; OPTIMAL EMBEDDINGS; HYPERCUBES; PATHS; CATERPILLARS; LADDERS; BIPANCYCLICITY; GRAPHS;
D O I
10.1109/TPDS.2014.2311794
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-ary n-cube Q(n)(k) is one of the most attractive interconnection networks for parallel and distributed systems. In this paper, we consider the problem of a fault-free hamiltonian cycle passing through prescribed edges in a k-ary n-cube Q(n)(k) with some faulty edges. The following result is obtained: For any n >= 2 and k >= 3, let F subset of E(Q(n)(k)), P subset of E(Q(n)(k)) \ F with vertical bar P vertical bar <= 2n - 2, vertical bar F vertical bar <= 2n - (vertical bar P vertical bar + 2). Then there exists a hamiltonian cycle passing through all edges of P in Q(n)(k) - P if and only if the subgraph induced by P consists of pairwise vertex-disjoint paths. It improves the result given by Yang and Wang [34].
引用
收藏
页码:434 / 443
页数:10
相关论文
共 35 条
[1]   Blue Gene/L torus interconnection network [J].
Adiga, NR ;
Blumrich, MA ;
Chen, D ;
Coteus, P ;
Gara, A ;
Giampapa, ME ;
Heidelberger, P ;
Singh, S ;
Steinmacher-Burow, BD ;
Takken, T ;
Tsao, M ;
Vranas, P .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (2-3) :265-276
[2]  
[Anonymous], P 38 IEEE COMP SOC I
[3]   Embedding ladders and caterpillars into the hypercube [J].
Bezrukov, S ;
Monien, B ;
Unger, W ;
Wechsung, G .
DISCRETE APPLIED MATHEMATICS, 1998, 83 (1-3) :21-29
[4]  
BONDY JA, 2007, GRAPH THEORY
[5]   LEE DISTANCE AND TOPOLOGICAL PROPERTIES OF K-ARY N-CUBES [J].
BOSE, B ;
BROEG, B ;
KWON, Y ;
ASHIR, Y .
IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (08) :1021-1030
[6]   Optimal embeddings of odd ladders into a hypercube [J].
Caha, R ;
Koubek, V .
DISCRETE APPLIED MATHEMATICS, 2002, 116 (1-2) :73-102
[7]   Hamiltonian cycles and paths with a prescribed set of edges in hypercubes and dense sets [J].
Caha, R ;
Koubek, V .
JOURNAL OF GRAPH THEORY, 2006, 51 (02) :137-169
[8]   Spanning regular caterpillars in hypercubes [J].
Caha, R ;
Koubek, V .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (03) :249-266
[9]   Optimal embeddings of generalized ladders into hypercubes [J].
Caha, R ;
Koubek, V .
DISCRETE MATHEMATICS, 2001, 233 (1-3) :65-83
[10]   Many-to-many disjoint paths in faulty hypercubes [J].
Chen, Xie-Bin .
INFORMATION SCIENCES, 2009, 179 (18) :3110-3115